- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我注意到 pandas Series.map() 对于 dict 映射非常快
准备如下数据:
a=np.random.randint(0,1000,10**5)
s=pd.Series(a)
d=dict(zip(np.arange(1000),np.random.random(1000)))
时间
%timeit -n10 s.map(d)
%timeit -n10 np.vectorize(d.get)(a)
给予
1.42 ms ± 168 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
20.6 ms ± 386 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
第二种方法是我在 stackoverflow 上发现的进行 numpy dict 映射的典型推荐。
numpy还有一个典型的解决方案如下
%%timeit -n10
b = np.copy(a)
for k, v in d.items():
b[a==k] = v
给出
43.9 ms ± 2.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
它甚至更慢,更糟糕的是,它给出了错误的结果。因为 b
是 int 类型,赋值 b[a==k] = v
将返回 b 将全为零!
所以我想知道 pandas Series.map() 的内部实现是什么?它在 numpy 中实现了吗?与具有相同性能的 Series.map() 等效的 numpy 是什么?我试图深入研究 Series.map() 的源代码,但无法理解它。
最佳答案
Series.map
将调用 _map_values()
这是 pandas/core/base.py 的一部分
你正在使用字典,所以你通过第一个 if is_dict_like(mapper):
子句来获取 mapper
,然后在第 1161-1162 行你得到此基本情况的映射函数(默认为 na_action=None
的非扩展类型)
else:
map_f = lib.map_infer
如果您随后转到 pandas/_libs/lib.pyx 中的那部分代码,您将看到 map_infer
is implemented in cython
.
正如他们在评论中指出的那样,这对于特定的输入来说非常快:
# we can fastpath dict/Series to an efficient map
# as we know that we are not going to have to yield
# python types
关于python - pandas Series.map() 的内部实现是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60023136/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!