- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的对象检测器已运行多次,但在 5428 的标记处,它随后因 TypeError 的错误而崩溃
我在 anaconda 中运行:
2020-02-19 13:56:06.901096: W tensorflow/core/framework/op_kernel.cc:1490] Invalid argument: TypeError: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer.
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\numpy\core\function_base.py", line 117, in linspace
num = operator.index(num)
TypeError: 'numpy.float64' object cannot be interpreted as an integer
I0219 13:55:41.016854 15428 basic_session_run_hooks.py:260] loss = 0.0140173, step = 5400 (10.773 sec)
INFO:tensorflow:Saving checkpoints for 5428 into training/model.ckpt.
I0219 13:55:43.900022 15428 basic_session_run_hooks.py:606] Saving checkpoints for 5428 into training/model.ckpt.
INFO:tensorflow:Calling model_fn.
I0219 13:55:56.207441 15428 estimator.py:1145] Calling model_fn.
INFO:tensorflow:Scale of 0 disables regularizer.
I0219 13:55:58.009801 15428 regularizers.py:98] Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
I0219 13:55:58.025418 15428 regularizers.py:98] Scale of 0 disables regularizer.
INFO:tensorflow:depth of additional conv before box predictor: 0
I0219 13:55:58.025418 15428 convolutional_box_predictor.py:151] depth of additional conv before box predictor: 0
INFO:tensorflow:Scale of 0 disables regularizer.
I0219 13:55:59.573186 15428 regularizers.py:98] Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
I0219 13:55:59.588815 15428 regularizers.py:98] Scale of 0 disables regularizer.
WARNING:tensorflow:From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
W0219 13:56:00.855241 15428 deprecation.py:323] From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
WARNING:tensorflow:From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version.
Instructions for updating:
tf.py_func is deprecated in TF V2. Instead, there are two
options available in V2.
- tf.py_function takes a python function which manipulates tf eager
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
an ndarray (just call tensor.numpy()) but having access to eager tensors
means `tf.py_function`s can use accelerators such as GPUs as well as
being differentiable using a gradient tape.
- tf.numpy_function maintains the semantics of the deprecated tf.py_func
(it is not differentiable, and manipulates numpy arrays). It drops the
stateful argument making all functions stateful.
W0219 13:56:01.105266 15428 deprecation.py:323] From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version.
Instructions for updating:
tf.py_func is deprecated in TF V2. Instead, there are two
options available in V2.
- tf.py_function takes a python function which manipulates tf eager
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
an ndarray (just call tensor.numpy()) but having access to eager tensors
means `tf.py_function`s can use accelerators such as GPUs as well as
being differentiable using a gradient tape.
- tf.numpy_function maintains the semantics of the deprecated tf.py_func
(it is not differentiable, and manipulates numpy arrays). It drops the
stateful argument making all functions stateful.
WARNING:tensorflow:From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:1044: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.
W0219 13:56:01.277014 15428 deprecation_wrapper.py:119] From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:1044: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.
WARNING:tensorflow:From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\model_lib.py:484: The name tf.metrics.mean is deprecated. Please use tf.compat.v1.metrics.mean instead.
W0219 13:56:01.386395 15428 deprecation_wrapper.py:119] From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\model_lib.py:484: The name tf.metrics.mean is deprecated. Please use tf.compat.v1.metrics.mean instead.
INFO:tensorflow:Done calling model_fn.
I0219 13:56:01.749697 15428 estimator.py:1147] Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2020-02-19T13:56:01Z
I0219 13:56:01.781106 15428 evaluation.py:255] Starting evaluation at 2020-02-19T13:56:01Z
INFO:tensorflow:Graph was finalized.
I0219 13:56:02.489665 15428 monitored_session.py:240] Graph was finalized.
2020-02-19 13:56:02.508162: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:06:00.0
2020-02-19 13:56:02.512995: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-02-19 13:56:02.516493: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2020-02-19 13:56:02.518703: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-19 13:56:02.523922: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2020-02-19 13:56:02.526614: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2020-02-19 13:56:02.529223: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 8788 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1)
WARNING:tensorflow:From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\saver.py:1276: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
W0219 13:56:02.535778 15428 deprecation.py:323] From C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\saver.py:1276: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
INFO:tensorflow:Restoring parameters from training/model.ckpt-5428
I0219 13:56:02.538779 15428 saver.py:1280] Restoring parameters from training/model.ckpt-5428
INFO:tensorflow:Running local_init_op.
I0219 13:56:03.495252 15428 session_manager.py:500] Running local_init_op.
INFO:tensorflow:Done running local_init_op.
I0219 13:56:03.656017 15428 session_manager.py:502] Done running local_init_op.
INFO:tensorflow:Performing evaluation on 5 images.
I0219 13:56:06.852077 13368 coco_evaluation.py:205] Performing evaluation on 5 images.
creating index...
index created!
INFO:tensorflow:Loading and preparing annotation results...
I0219 13:56:06.867704 13368 coco_tools.py:115] Loading and preparing annotation results...
INFO:tensorflow:DONE (t=0.00s)
I0219 13:56:06.867704 13368 coco_tools.py:137] DONE (t=0.00s)
creating index...
index created!
2020-02-19 13:56:06.901096: W tensorflow/core/framework/op_kernel.cc:1490] Invalid argument: TypeError: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer.
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\numpy\core\function_base.py", line 117, in linspace
num = operator.index(num)
TypeError: 'numpy.float64' object cannot be interpreted as an integer
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\script_ops.py", line 209, in __call__
ret = func(*args)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py", line 384, in first_value_func
self._metrics = self.evaluate()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py", line 215, in evaluate
coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_tools.py", line 176, in __init__
iouType=iou_type)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 76, in __init__
self.params = Params(iouType=iouType) # parameters
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 527, in __init__
self.setDetParams()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 507, in setDetParams
self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True)
File "<__array_function__ internals>", line 6, in linspace
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\numpy\core\function_base.py", line 121, in linspace
.format(type(num)))
TypeError: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer.
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1356, in _do_call
return fn(*args)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1341, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1429, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.OutOfRangeError: 2 root error(s) found.
(0) Out of range: End of sequence
[[{{node IteratorGetNext}}]]
(1) Out of range: End of sequence
[[{{node IteratorGetNext}}]]
[[Loss/BoxClassifierLoss/assert_equal/Assert/Assert/data_4/_2449]]
0 successful operations.
0 derived errors ignored.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\evaluation.py", line 272, in _evaluate_once
session.run(eval_ops, feed_dict)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 754, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1252, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1353, in run
raise six.reraise(*original_exc_info)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\six.py", line 703, in reraise
raise value
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1338, in run
return self._sess.run(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1411, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1169, in run
return self._sess.run(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 950, in run
run_metadata_ptr)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1173, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1350, in _do_run
run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1370, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.OutOfRangeError: 2 root error(s) found.
(0) Out of range: End of sequence
[[node IteratorGetNext (defined at model_main.py:105) ]]
(1) Out of range: End of sequence
[[node IteratorGetNext (defined at model_main.py:105) ]]
[[Loss/BoxClassifierLoss/assert_equal/Assert/Assert/data_4/_2449]]
0 successful operations.
0 derived errors ignored.
Original stack trace for 'IteratorGetNext':
File "model_main.py", line 109, in <module>
tf.app.run()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\platform\app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\absl\app.py", line 299, in run
_run_main(main, args)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\absl\app.py", line 250, in _run_main
sys.exit(main(argv))
File "model_main.py", line 105, in main
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 473, in train_and_evaluate
return executor.run()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 613, in run
return self.run_local()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 714, in run_local
saving_listeners=saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 367, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1158, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1192, in _train_model_default
saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1484, in _train_with_estimator_spec
_, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 754, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1252, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1338, in run
return self._sess.run(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1419, in run
run_metadata=run_metadata))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\basic_session_run_hooks.py", line 594, in after_run
if self._save(run_context.session, global_step):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\basic_session_run_hooks.py", line 619, in _save
if l.after_save(session, step):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 519, in after_save
self._evaluate(global_step_value) # updates self.eval_result
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 539, in _evaluate
self._evaluator.evaluate_and_export())
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 920, in evaluate_and_export
hooks=self._eval_spec.hooks)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 477, in evaluate
name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 519, in _actual_eval
return _evaluate()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 501, in _evaluate
self._evaluate_build_graph(input_fn, hooks, checkpoint_path))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1501, in _evaluate_build_graph
self._call_model_fn_eval(input_fn, self.config))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1534, in _call_model_fn_eval
input_fn, ModeKeys.EVAL)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1022, in _get_features_and_labels_from_input_fn
self._call_input_fn(input_fn, mode))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\util.py", line 65, in parse_input_fn_result
result = iterator.get_next()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\data\ops\iterator_ops.py", line 426, in get_next
output_shapes=self._structure._flat_shapes, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\gen_dataset_ops.py", line 1947, in iterator_get_next
output_shapes=output_shapes, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 3616, in create_op
op_def=op_def)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 2005, in __init__
self._traceback = tf_stack.extract_stack()
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\script_ops.py", line 209, in __call__
ret = func(*args)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py", line 384, in first_value_func
self._metrics = self.evaluate()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py", line 215, in evaluate
coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_tools.py", line 176, in __init__
iouType=iou_type)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 76, in __init__
self.params = Params(iouType=iouType) # parameters
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 527, in __init__
self.setDetParams()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\pycocotools\cocoeval.py", line 507, in setDetParams
self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True)
File "<__array_function__ internals>", line 6, in linspace
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\numpy\core\function_base.py", line 121, in linspace
.format(type(num)))
TypeError: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer.
[[node PyFunc_3 (defined at C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py:394) ]]
0 successful operations.
0 derived errors ignored.
Original stack trace for 'PyFunc_3':
File "model_main.py", line 109, in <module>
tf.app.run()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\platform\app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\absl\app.py", line 299, in run
_run_main(main, args)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\absl\app.py", line 250, in _run_main
sys.exit(main(argv))
File "model_main.py", line 105, in main
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 473, in train_and_evaluate
return executor.run()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 613, in run
return self.run_local()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 714, in run_local
saving_listeners=saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 367, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1158, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1192, in _train_model_default
saving_listeners)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1484, in _train_with_estimator_spec
_, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 754, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1252, in run
run_metadata=run_metadata)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1338, in run
return self._sess.run(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\monitored_session.py", line 1419, in run
run_metadata=run_metadata))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\basic_session_run_hooks.py", line 594, in after_run
if self._save(run_context.session, global_step):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\basic_session_run_hooks.py", line 619, in _save
if l.after_save(session, step):
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 519, in after_save
self._evaluate(global_step_value) # updates self.eval_result
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 539, in _evaluate
self._evaluator.evaluate_and_export())
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 920, in evaluate_and_export
hooks=self._eval_spec.hooks)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 477, in evaluate
name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 519, in _actual_eval
return _evaluate()
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 501, in _evaluate
self._evaluate_build_graph(input_fn, hooks, checkpoint_path))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1501, in _evaluate_build_graph
self._call_model_fn_eval(input_fn, self.config))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1537, in _call_model_fn_eval
features, labels, ModeKeys.EVAL, config)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1146, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\model_lib.py", line 482, in model_fn
eval_config, list(category_index.values()), eval_dict)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py", line 947, in get_eval_metric_ops_for_evaluators
eval_dict))
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\metrics\coco_evaluation.py", line 394, in get_estimator_eval_metric_ops
first_value_op = tf.py_func(first_value_func, [], tf.float32)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\util\deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\script_ops.py", line 480, in py_func
return py_func_common(func, inp, Tout, stateful, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\script_ops.py", line 462, in py_func_common
func=func, inp=inp, Tout=Tout, stateful=stateful, eager=False, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\script_ops.py", line 285, in _internal_py_func
input=inp, token=token, Tout=Tout, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\gen_script_ops.py", line 159, in py_func
"PyFunc", input=input, token=token, Tout=Tout, name=name)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 3616, in create_op
op_def=op_def)
File "C:\Users\luke9\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 2005, in __init__
self._traceback = tf_stack.extract_stack()
最佳答案
尝试降级您的 numpy 版本。
就我而言,我不得不将其降级到 1.17.4
关于numpy - 5428 步后对象检测崩溃,类型错误 : 'numpy.float64' object cannot be interpreted as an integer,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60302848/
我知道问题的标题听起来很奇怪,但我不知道该怎么调用它。 首先,我有一个网格布局,我希望我的 .search-wrapper 宽度为 50% 并向右浮动。在我的演示中 jsfiddle整个 .searc
我们正在使用 QA-C 来实现 MISRA C++ 一致性,但是该工具会为这样的代码喷出错误: float a = foo(); float b = bar(); float c = a - b; 据
考虑 float a[] = { 0.1, 0.2, 0.3}; 我很困惑a稍后传递给函数 foo(float* A) .不应该是 float* 类型的变量指向单个浮点数,对吗?就像这里提到的tu
这可能是我一段时间以来收到的最好的错误消息,我很好奇出了什么问题。 原代码 float currElbowAngle = LeftArm ? Elbow.transform.localRotation
刚开始学习 F#,我正在尝试为 e 生成和评估泰勒级数的前 10 项。我最初编写了这段代码来计算它: let fact n = function | 0 -> 1 | _ -> [1
我已经使用 Erlang 读取二进制文件中的 4 个字节(小端)。 在尝试将二进制转换为浮点时,我一直遇到以下错误: ** exception error: bad argument in
假设我有: float a = 3 // (gdb) p/f a = 3 float b = 299792458 // (gdb) p/f b = 29979244
我每次都想在浏览器顶部修复这个框。但是右边有一些问题我不知道如何解决所以我寻求帮助。 #StickyBar #RightSideOfStickyBar { float : right ; }
我正在研究 C# 编译器并试图理解数学运算规则。 我发现在两种不同的原始类型之间使用 == 运算符时会出现难以理解的行为。 int a = 1; float b = 1.0f; Cons
假设我有: float a = 3 // (gdb) p/f a = 3 float b = 299792458 // (gdb) p/f b = 29979244
Denormals众所周知,与正常情况相比,表现严重不佳,大约是 100 倍。这经常导致 unexpected软件 problems . 我很好奇,从 CPU 架构的角度来看,为什么非规范化必须是 那
我有一个由两个 float 组成的区间,并且需要生成 20 个随机数,看起来介于两个 float 定义的区间之间。 比方说: float a = 12.49953f float b = 39.1123
我正在构建如下矩阵: QMatrix4x3 floatPos4x3 = QMatrix4x3( floatPos0.at(0), floatPos1.at(0), floatPos2.at(0),
给定归一化的浮点数f,在f之前/之后的下一个归一化浮点数是多少。 通过微动,提取尾数和指数,我得到了: next_normalized(double&){ if mantissa is n
关于 CSS“float”属性的某些东西一直让我感到困惑。为什么将“float”属性应用到您希望 float 的元素之前的元素? 为了帮助可视化我的问题,我创建了以下 jsFiddle http://
关于 CSS“float”属性的某些东西一直让我感到困惑。为什么将“float”属性应用到您希望 float 的元素之前的元素? 为了帮助可视化我的问题,我创建了以下 jsFiddle http://
我有一个新闻源/聊天框。每个条目包含两个跨度:#user 和#message。我希望#user 向左浮动,而#message 向左浮动。如果#message 导致行超过容器宽度,#message 应该
我想创建一个“记分卡”网格来输出一些数据。如果每个 div.item 中的数据都具有相同的高度,那么在每个 div.item 上留下一个简单的 float 会提供一个漂亮的均匀布局,它可以根据浏览器大
我正在学习使用 CSS float 属性。我想了解此属性的特定效果。 考虑以下简单的 HTML 元素: div1 div2 This is a paragraph 以及以下 CSS 规则: div {
我正在尝试从可以是 int 或 float 的文件中提取数据。我发现这个正则表达式将从文件 (\d+(\.\d+)?) 中提取这两种类型,但我遇到的问题是它将 float 拆分为两个。 >>> imp
我是一名优秀的程序员,十分优秀!