gpt4 book ai didi

linear-programming - 为什么这个混合整数程序的求解效率如此之低?

转载 作者:行者123 更新时间:2023-12-01 11:20:32 25 4
gpt4 key购买 nike

我正在尝试使用 GLPK 和 CBC 求解 MIP,但求解器都无法有效地找到解。 GLPK 求解器日志显示,它可以快速找到与真正最优解相差 0.1% 以内的解,但随后会花费很长时间才能找到真正的最优解。

我知道我可以使用 miptol arg 来设置容差——我的问题是,这个问题是怎么导致求解器如此低效地找到真正的最优解的?我经常使用略有不同的输入来解决这个问题的版本,并且它们在不到一秒钟的时间内就解决了。

这是一个file with my problem specification可以使用 glpsol --cpxlp anonymizedlp.lp 在 GLPK 中运行。

下面是一些 GLPK 日志——您会看到在 54K 次迭代中找到了一个接近最优的 MIP 解决方案,然后分支树开始越来越大:

GLPSOL: GLPK LP/MIP Solver, v4.61
Parameter(s) specified in the command line:
--cpxlp /var/folders/g6/fs71g8j575v4_whqythqw7h40000gn/T/11446-pulp.lp -o
/var/folders/g6/fs71g8j575v4_whqythqw7h40000gn/T/11446-pulp.sol
Reading problem data from '/var/folders/g6/fs71g8j575v4_whqythqw7h40000gn/T/11446-pulp.lp'...
664 rows, 781 columns, 2576 non-zeros
443 integer variables, 338 of which are binary
3195 lines were read
GLPK Integer Optimizer, v4.61
664 rows, 781 columns, 2576 non-zeros
443 integer variables, 338 of which are binary
Preprocessing...
213 constraint coefficient(s) were reduced
524 rows, 652 columns, 2246 non-zeros
318 integer variables, 213 of which are binary
Scaling...
A: min|aij| = 1.282e-01 max|aij| = 1.060e+07 ratio = 8.267e+07
GM: min|aij| = 7.573e-01 max|aij| = 1.320e+00 ratio = 1.744e+00
EQ: min|aij| = 6.108e-01 max|aij| = 1.000e+00 ratio = 1.637e+00
2N: min|aij| = 3.881e-01 max|aij| = 1.355e+00 ratio = 3.491e+00
Constructing initial basis...
Size of triangular part is 524
Solving LP relaxation...
GLPK Simplex Optimizer, v4.61
524 rows, 652 columns, 2246 non-zeros
0: obj = -0.000000000e+00 inf = 2.507e+02 (195)
238: obj = -5.821025664e+06 inf = 0.000e+00 (0)
* 363: obj = -7.015287886e+04 inf = 0.000e+00 (0) 1
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
+ 363: mip = not found yet <= +inf (1; 0)
+ 8606: mip = not found yet <= -7.015289436e+04 (8239; 0)
+ 13027: mip = not found yet <= -7.015289436e+04 (12660; 0)
+ 16367: mip = not found yet <= -7.015289436e+04 (16000; 0)
+ 19135: mip = not found yet <= -7.015289436e+04 (18768; 0)
+ 21523: mip = not found yet <= -7.015289436e+04 (21156; 0)
+ 23667: mip = not found yet <= -7.015289436e+04 (23300; 0)
+ 25415: mip = not found yet <= -7.015289436e+04 (25048; 0)
+ 27260: mip = not found yet <= -7.015289436e+04 (26893; 0)
+ 29055: mip = not found yet <= -7.015289436e+04 (28688; 0)
+ 30770: mip = not found yet <= -7.015289436e+04 (30403; 0)
+ 32362: mip = not found yet <= -7.015289436e+04 (31995; 0)
Time used: 60.0 secs. Memory used: 14.1 Mb.
+ 33876: mip = not found yet <= -7.015289436e+04 (33509; 0)
+ 35338: mip = not found yet <= -7.015289436e+04 (34971; 0)
+ 36721: mip = not found yet <= -7.015289436e+04 (36354; 0)
+ 38080: mip = not found yet <= -7.015289436e+04 (37713; 0)
+ 39372: mip = not found yet <= -7.015289436e+04 (39005; 0)
+ 40601: mip = not found yet <= -7.015289436e+04 (40234; 0)
+ 41837: mip = not found yet <= -7.015289436e+04 (41470; 0)
+ 43036: mip = not found yet <= -7.015289436e+04 (42669; 0)
+ 44192: mip = not found yet <= -7.015289436e+04 (43825; 0)
+ 45350: mip = not found yet <= -7.015289436e+04 (44983; 0)
+ 46374: mip = not found yet <= -7.015289436e+04 (46007; 0)
+ 47281: mip = not found yet <= -7.015289436e+04 (46914; 0)
Time used: 120.0 secs. Memory used: 20.4 Mb.
+ 48220: mip = not found yet <= -7.015289436e+04 (47853; 0)
+ 49195: mip = not found yet <= -7.015289436e+04 (48828; 0)
+ 50131: mip = not found yet <= -7.015289436e+04 (49764; 0)
+ 51110: mip = not found yet <= -7.015289436e+04 (50743; 0)
+ 52131: mip = not found yet <= -7.015289436e+04 (51764; 0)
+ 53092: mip = not found yet <= -7.015289436e+04 (52725; 0)
+ 53901: >>>>> -7.015398607e+04 <= -7.015289436e+04 < 0.1% (53532; 0)
+ 61014: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (57365; 3302)
+ 64785: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (61136; 3302)
+ 67671: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (64022; 3302)
+ 70330: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (66681; 3302)
+ 72613: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (68964; 3302)
+ 74731: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (71082; 3302)
Time used: 180.0 secs. Memory used: 29.9 Mb.
+ 76685: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (73036; 3302)
+ 78508: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (74859; 3302)
+ 80220: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (76571; 3302)
+ 81852: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (78203; 3302)
+ 83368: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (79719; 3302)
+ 84815: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (81166; 3302)
+ 86126: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (82477; 3302)
+ 87358: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (83709; 3302)
+ 88612: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (84963; 3302)
+ 89821: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (86172; 3302)
+ 90989: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (87340; 3302)
+ 92031: mip = -7.015398607e+04 <= -7.015290061e+04 < 0.1% (88382; 3302)

最佳答案

SCIP能够在几分之一秒内解决问题。三种启发式(锁定、移位和 oneopt)产生越来越好的解决方案,直到达到双重界限。它在根节点中求解,没有任何切割平面。

如果没有预求解,它会删除一半的约束和一半的二进制变量,SCIP 需要更长的时间来解决它。它仍然在根节点中解决,只添加了很少的切割平面,并且相同的启发式算法找到了 3 个整数可行解,包括最优解。

虽然这并没有回答您关于为什么这个问题对于 GLPK 或 CBC 来说很难的问题,但至少对于 SCIP 来说并不难,它也是开源的并且对学术界免费。很可能其中一种启发式方法没有在其他求解器中实现,因为在 SCIP 中禁用启发式方法会使找到解决方案变得更加困难 - 分支根本无法解决这个问题。

你需要有正确的启发式。

关于linear-programming - 为什么这个混合整数程序的求解效率如此之低?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44208265/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com