- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个来自支持票务系统的数据集,该系统记录了代理在分类和响应客户请求时所做的每次点击。系统为每次点击分配一个新的 hist_id,但代理将点击多个字段,触发表中的几行,他们认为这是一次“交互”。
我的目标是通过对每个组中的第一个和最后一个 modify_time 值进行差异计算来计算每个交互的处理时间。
我目前陷入困境,因为代理将在一天内与案例进行多次交互。
这是一个示例数据框:
hist_id <- c(1234, 2345, 3456, 4567, 5678, 6789, 7890)
case_id <- c(1, 1, 1, 1, 1, 1, 1)
agent_name <- c("John", "John", "John", "Paul", "Paul", "John", "John")
modify_time <- as.POSIXct(c(1510095120, 1510095180, 1510095240, 1510098600, 1510098720, 1510135200, 1510135320), origin = "1970-01-01")
df <- data.frame(hist_id, case_id, agent_name, modify_time)
df %>% group_by(case_id, agent_name) %>% mutate(first = first(modify_time), last = last(modify_time), diff = min(difftime(last, first)))
# A tibble: 7 x 7
# Groups: case_id, agent_name [2]
hist_id case_id agent_name modify_time first last diff
<dbl> <dbl> <fctr> <dttm> <dttm> <dttm> <time>
1 1234 1 John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
2 2345 1 John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
3 3456 1 John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
4 4567 1 Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
5 5678 1 Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
6 6789 1 John 2017-11-08 04:00:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
7 7890 1 John 2017-11-08 04:02:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
# A tibble: 7 x 7
# Groups: case_id, agent_name [2]
hist_id case_id agent_name modify_time first last diff
<dbl> <dbl> <fctr> <dttm> <dttm> <dttm> <time>
1 1234 1 John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
2 2345 1 John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
3 3456 1 John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
4 4567 1 Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
5 5678 1 Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
6 6789 1 John 2017-11-08 04:00:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs
7 7890 1 John 2017-11-08 04:02:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs
最佳答案
这是一个 tidyverse 方法,它通过 processing cluster identity
以及 case_id
和 agent_name
对组进行分区:
将所有的点击按顺序排列,每次 hist_id
序列遇到转换到新的 agent_name
时,都会生成一个新的 id 标志。 cumsum
这些标志为每个案例、每个代理、每个集群处理块生成唯一的 prcl_id
。有了所有三个 ID,您就可以在所需的分区内运行您选择的突变。
df %>%
arrange(hist_id) %>% # to ensure there are no wrinkles
mutate(ag_chg_flg = ifelse(lag(agent_name) != agent_name, 1, 0) %>%
coalesce(0) # to reassign the first click in a case_id to 0 (from NA)
) %>%
group_by(case_id, agent_name) %>%
mutate(prcl_id = cumsum(ag_chg_flg) + 1) %>% # generate the proc_clst_id (starting at 1)
group_by(case_id, agent_name, prcl_id) %>% # group by the complete composite id
mutate(first = first(modify_time),
last = last(modify_time),
diff = min(difftime(last, first))
)
# A tibble: 7 x 9
# Groups: case_id, agent_name, prcl_id [3]
hist_id case_id agent_name modify_time ag_chg_flg prcl_id first last diff
<dbl> <dbl> <fctr> <dttm> <dbl> <dbl> <dttm> <dttm> <time>
1 1234 1 John 2017-11-07 14:52:00 0 1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
2 2345 1 John 2017-11-07 14:53:00 0 1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
3 3456 1 John 2017-11-07 14:54:00 0 1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
4 4567 1 Paul 2017-11-07 15:50:00 1 2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
5 5678 1 Paul 2017-11-07 15:52:00 0 2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
6 6789 1 John 2017-11-08 02:00:00 1 2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins
7 7890 1 John 2017-11-08 02:02:00 0 2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins
关于r - 按 r 中的连续值分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47169195/
您好,我正在处理 BIRT 报告。我有一个查询,我必须对父级的重复数据进行分组,但子级也不能分组! 在我的查询中: item 是父项,item_ledger_entry 是子项。我有来自 item.N
我正在使用 GA API。 这是针对 MCF 目标报告(底部)的标准目标完成指标表(顶部) 看一下这个: 总数加起来 (12,238),但看看按 channel 分组的分割有多么不同!我以为这些会很接
我正在开发一个流量计数器,我想获得 IP 和重复计数,但是如何? 就像是 :select ip, count(ip) from Redirect 返回 : null total ip count 重定
我尝试编写一个正则表达式来匹配条件表达式,例如: a!=2 1+2=2+a 我尝试提取运算符。我当前的正则表达式是“.+([!=<>]+).+” 但问题是匹配器总是尝试匹配组中可能的最短字符串
在 MS Transact SQL 中,假设我有一个这样的表(订单): Order Date Order Total Customer # 09/30/2008 8
我想按 m.ID 分组,并对每个 m.id 求和 (pm.amount_construction* prod.anzahl) 实际上我有以下结果: Meterial_id | amount_const
我想根据多列中的值对值进行分组。这是一个例子: 我想得到输出: {{-30,-50,20},{-20,30,60},{-30,NULL or other value, 20}} 我设法到达: SELE
我正在尝试找出运行此查询的最佳方式。我基本上需要返回在我们的系统中只下了一个订单的客户的“登录”字段列表(登录字段基本上是客户 ID/ key )。 我们系统的一些背景...... 客户在同一日期下的
给定以下mysql结果集: id code name importance '1234', 'ID-CS-B', 'Chocolate Sauce'
大家好,我的数据框中有以下列: LC_REF 1 DT 16 2C 2 DT 16 2C 3 DT 16 2C 1 DT 16 3C 6 DT 16 3C 3
我有这样的 mongoDB 集合 { "_id" : "EkKTRrpH4FY9AuRLj", "stage" : 10, }, { "_id" : "EkKTRrpH4FY9
假设我有一组数据对,其中 index 0 是值,index 1 是类型: input = [ ('11013331', 'KAT'), ('9085267',
java中用stream进行去重,排序,分组 一、distinct 1. 八大基本数据类型 List collect = ListUtil.of(1, 2, 3, 1, 2).stream().fil
基本上,我从 TABLE_A 中的这个开始 France - 100 France - 200 France - 300 Mexico - 50 Mexico - 50 Mexico - 56 Pol
我希望这个正则表达式 ([A-Z]+)$ 将选择此示例中的最后一次出现: AB.012.00.022ABC-1 AB.013.00.022AB-1 AB.014.00.022ABAB-1 但我没有匹配
我创建了一个数据透视表,但数据没有组合在一起。 任何人都可以帮助我获得所需的格式吗? 我为获取数据透视表而编写的查询: DECLARE @cols AS NVARCHAR(MAX), -- f
我想按时间段(月,周,日,小时,...)选择计数和分组。例如,我想选择行数并将它们按 24 小时分组。 我的表创建如下。日期是时间戳。 CREATE TABLE MSG ( MSG_ID dec
在 SQL Server 2005 中,我有一个包含如下数据的表: WTN------------Date 555-111-1212 2009-01-01 555-111-1212 2009-
题 假设我有 k 个标量列,如果它们沿着每列彼此在一定距离内,我想对它们进行分组。 假设简单 k 是 2 并且它们是我唯一的列。 pd.DataFrame(list(zip(sorted(choice
问题 在以下数据框中 df : import random import pandas as pd random.seed(999) sz = 50 qty = {'one': 1, 'two': 2
我是一名优秀的程序员,十分优秀!