gpt4 book ai didi

java - 方法返回 222 * (2 + 2 + 2) 而不是 222 * 222

转载 作者:行者123 更新时间:2023-12-01 10:49:35 27 4
gpt4 key购买 nike

public BCD multiplyBCDs(BCD other) {
BCD thisBCD = new BCD(digit);
BCD newBCD = new BCD(0);
int DIGIT = 0;
do {
newBCD = newBCD.addBCDs(other.multiplyBy(thisBCD.nthDigit(DIGIT)));
other = other.multiplyByTen();
DIGIT++;
} while (DIGIT < thisBCD.numberOfDigits());
return newBCD;
}

程序的其余部分对于解决我的问题来说不应该太重要,但如果是的话,我会将其其余部分发布在底部。每个 BCD 基本上都是存储在数组中的整数。 thisBCD 等于 222,BCD other 也等于 222。我的目标是将这两个 BCD 相乘。

nthDigit 与 thisBCD[DIGIT] 基本相同,返回数字的某位。

MultiplyBy 将 BCD 乘以给定的整数。

MultiplyByTen 乘以 10。(废话)

addBCDs 将 2 个 BCD 加在一起。

我的问题是,该方法返回 1332 (222 * (2 + 2 + 2),而不是 49,284 ((222 * 2) + (222 * 20) + (222 * 200)。

如果您需要的话,这是我的程序和驱动程序的其余部分:

public class BCD {
private int[] digit;

// constructor (creates array from another array)
public BCD(int bcdDigits[]) {
digit = new int[bcdDigits.length];
for (int i = 0; i < digit.length; i++) {
digit[i] = bcdDigits[i];
}
}

// constructor (creates array from an int)
public BCD(int num) {
digit = new int[1];
int DIGIT = num % 10;
digit[0] = DIGIT;
num /= 10;
while (num > 0) {
DIGIT = num % 10;
addADigit(DIGIT);
num /= 10;
}
}

// returns number of digits in bcd
public int numberOfDigits() {
int length = digit.length;
return length;
}

// returns the value of a certain digit in the BCD
public int nthDigit(int n) {
System.out.println("N: " + n);
if (n >= digit.length || n < 0) {
return -1;
} else {
return digit[digit.length - 1 - n];
}
}

// prints the BCD backwards (printing the original number being stored in
// the array)
public void print() {
for (int i = digit.length - 1; i >= 0; i--) {
System.out.print(digit[i]);
if (i % 3 == 0 && i != 0) {
System.out.print(",");
}
}
}

// adds a digit to the BCD
public void addADigit(int newdigit) {
int[] a = new int[digit.length + 1];
for (int i = 0; i < digit.length; i++) {
a[i] = digit[i];
}
a[a.length - 1] = newdigit;
digit = a;
}

public BCD addBCDs(BCD other) {
BCD newBCD = null;
int length;
if (other.numberOfDigits() > digit.length) {
length = other.numberOfDigits();
} else {
length = digit.length;
}
int count = 0;
int temp = 0;
int carry = 0;
while (count < length + 1) {
temp = 0;
// Adds the value of digit[count] to temp, assuming that there is a
// number available there.
if (count <= digit.length - 1) {
temp += digit[count];
}

// Adds the value of other.nthDigit(count) to temp, assuming that
// there is a number available there.
if (count <= (other.numberOfDigits()) - 1) {
temp += other.nthDigit(count);
}

// either adds temp as the first digit of the newBCD, or adds temp %
// 10, and sets up a carry. This section is for the first digit
// only.
if (count == 0 && temp < 10) {
newBCD = new BCD(temp);
} else if (count == 0 && temp >= 10) {
newBCD = new BCD(temp % 10);
carry++;
}

// either adds temp as the next digit of the newBCD, or adds temp %
// 10, and sets up a carry. This section works for all digits
// excluding the first.

if (count > 0 && temp + carry < 10 && count < length) {
newBCD.addADigit(temp + carry);
carry = 0;
} else if (count > 0 && temp + carry < 10 && count == length && temp + carry != 0) {
newBCD.addADigit(temp + carry);
carry = 0;
} else if (temp + carry >= 10 && count > 0) {
newBCD.addADigit((temp + carry) % 10);
carry = 0;
carry++;
}
count++;
}
return newBCD;
}

public BCD multiplyByTen() {
BCD oldBCD = new BCD(digit);
if (oldBCD.numberOfDigits() == 1 && oldBCD.nthDigit(0) == 0) {
BCD newBCD = new BCD(0);
return newBCD;
} else {
int[] newArray = new int[oldBCD.numberOfDigits() + 1];
newArray[0] = 0;
for (int i = 1; i < newArray.length; i++) {
newArray[i] = oldBCD.nthDigit(i - 1);
}
BCD newBCD = new BCD(newArray);
return newBCD;
}
}

public BCD multiplyBy(int num) {
int[] digit2 = new int[digit.length + num];
System.out.println("Num: " + num);
for (int i = 0; i < digit.length; i++) {
digit2[i] = digit[i];
}
int length = 0;
if (digit.length > num) {
length = num;
} else {
length = digit.length;
}

if (num == 0) {
BCD newBCD = new BCD(0);
return newBCD;
} else if (num == 1) {
BCD newBCD = new BCD(digit);
return newBCD;
} else if (num == 10) {
BCD newBCD = new BCD(digit);
newBCD = newBCD.multiplyByTen();
return newBCD;
}
BCD newBCD = null;
int temp = 0;
int carry = 0;
for (int count = 0; count < (digit2.length); count++) {
if (count == 0) {
temp = digit2[count] * num;
if ((temp + carry) == 0 && count >= length) {
} else {
newBCD = new BCD((temp + carry) % 10);
}
carry = temp / 10;
} else {
temp = digit2[count] * num;
if ((temp + carry) == 0 && count >= length) {
} else {
newBCD.addADigit((temp + carry) % 10);
}
carry = temp / 10;
}
}
return newBCD;
}

public BCD multiplyBCDs(BCD other) {
BCD thisBCD = new BCD(digit);
BCD newBCD = new BCD(0);
int DIGIT = 0;
do {
newBCD = newBCD.addBCDs(other.multiplyBy(thisBCD.nthDigit(DIGIT)));
System.out.println("thisBCD nthDigit: " + thisBCD.nthDigit(DIGIT));
other = other.multiplyByTen();
System.out.print("\nOther: ");
other.print();
DIGIT++;
} while (DIGIT < thisBCD.numberOfDigits());
return newBCD;
}

// public static BCD factorial(int num) {

// return newBCD; // this is a different newBCD you still need to create
// }
}

驱动程序:

public class BCDDriver {
public static void main(String[] args) {
BCD B1 = new BCD(22);
System.out.print("B1: ");
B1.print();
B1 = B1.multiplyBy(2);
System.out.print("\nProduct: ");
B1.print();
BCD B2 = new BCD(22);
System.out.print("\nB2: ");
B2.print();
BCD B3 = new BCD(22);
System.out.print("\nB3: ");
B3.print();
B2 = B2.multiplyBCDs(B3);
System.out.print("\nProduct: ");
B2.print();
}

}

最佳答案

这里有几个问题。我不会为你做作业,但是:

  1. 在 add 方法中,您将 this.digit[count] 添加到 other.nthdigit(count)。您应该将 this.digit[count] 添加到 other.digit[count] 或将 this.nthdigit(count) 添加到 other .nthdigit(count),取决于循环的运行方式。 (这个问题可以通过使用 222 等测试值来掩盖:不要这样做)。

  2. add方法的其余部分基本上是废话。无需为每个数字创建新的 BCD,例如:您可以直接将所有加法添加到目标数组中。你需要写下加法的手工方法并实现它。大约有五行代码,而不是四十行。

  3. 实际上没有必要在`multiplyByTen() 方法中创建一个非零的特殊情况,尽管出于速度原因我可能会这样做。没有必要证明您对问题的理解。

  4. 类似地,您的 multiplyBy() 方法的长度大约是所需长度的四倍。只是事情没那么复杂。只需要 4-5 行代码。在这里,您再次为每个数字创建一个新的 BCD,这是不必要的,并且与其他地方的特殊大小写零的想法背道而驰。事实上,除了作为性能优化之外,零在任何地方都不是特殊情况。

  5. 您的 multiplyBCDs() 方法看起来非常优雅,与其他方法不同,但我不相信它可以正确处理进位。

关于java - 方法返回 222 * (2 + 2 + 2) 而不是 222 * 222,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33989069/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com