gpt4 book ai didi

scala - 如何使用 JohnSnowLabs NLP 拼写校正模块 NorvigSweetingModel?

转载 作者:行者123 更新时间:2023-12-01 09:54:28 24 4
gpt4 key购买 nike

我正在浏览 JohnSnowLabs SpellChecker here .

我在那里找到了Norvig的算法实现,示例部分只有以下两行:

import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
NorvigSweetingModel.pretrained()

我如何在下面的数据框 (df) 上应用这个预训练模型来拼写更正“names”列?

+----------------+---+------------+
| names|age| color|
+----------------+---+------------+
| [abc, cde]| 19| red, abc|
|[eefg, efa, efb]|192|efg, efz efz|
+----------------+---+------------+

我试过如下:

val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

val cdf = schk.transform(df)

但是上面的代码给了我以下错误:

java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
at scala.Predef$.require(Predef.scala:224)
at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
... 49 elided

最佳答案

spark-nlp旨在用于其自己的特定管道,不同转换器的输入列必须包含特殊的元数据。

异常已经告诉您 NorvigSweetingModel 的输入应该标记化:

Make sure such columns have following annotator types: token

如果我没记错的话,至少你会在这里组装文档并标记化。

import com.johnsnowlabs.nlp.DocumentAssembler
import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
import com.johnsnowlabs.nlp.annotators.Tokenizer
import org.apache.spark.ml.Pipeline

val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

val nlpPipeline = new Pipeline().setStages(Array(
new DocumentAssembler().setInputCol("names").setOutputCol("document"),
new Tokenizer().setInputCols("document").setOutputCol("tokens"),
NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
))

A Pipeline像这样,可以通过小的调整应用于您的数据 - 输入数据必须是 string不是 array<string> *:

val result = df
.transform(_.withColumn("names", concat_ws(" ", $"names")))
.transform(df => nlpPipeline.fit(df).transform(df))
result.show()
+------------+--------------------+--------------------+--------------------+
| names| document| tokens| corrected|
+------------+--------------------+--------------------+--------------------+
| abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
|eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
+------------+--------------------+--------------------+--------------------+

如果你想要一个可以导出的输出,你应该扩展你的 PipelineFinisher .

import com.johnsnowlabs.nlp.Finisher

new Finisher().setInputCols("corrected").transform(result).show
 +------------+------------------+
| names|finished_corrected|
+------------+------------------+
| abc cde| [abc, cde]|
|eefg efa efb| [eefg, efa, efb]|
+------------+------------------+

* 根据 the docs DocumentAssembler

can read either a String column or an Array[String]

但在 1.7.3 中它看起来不像在实践中起作用:

df.transform(df => nlpPipeline.fit(df).transform(df)).show()
org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
'Project [names#62, UDF(names#62) AS document#343]
+- AnalysisBarrier
+- Project [value#60 AS names#62]
+- LocalRelation [value#60]

关于scala - 如何使用 JohnSnowLabs NLP 拼写校正模块 NorvigSweetingModel?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53418267/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com