gpt4 book ai didi

java - 韦卡分类器

转载 作者:行者123 更新时间:2023-12-01 09:46:27 25 4
gpt4 key购买 nike

我编写了一个简单的贝叶斯分类器。这是代码:

public static void main(String[] args) throws Exception {
Attribute Attribute1 = new Attribute("firstNumeric");
Attribute Attribute2 = new Attribute("secondNumeric");

// Declare a nominal attribute along with its values
ArrayList<String> fvNominalVal = new ArrayList(3);
fvNominalVal.add("blue");
fvNominalVal.add("gray");
fvNominalVal.add("black");
Attribute Attribute3 = new Attribute("aNominal", fvNominalVal);

// Declare the class attribute along with its values
ArrayList<String> fvClassVal = new ArrayList(2);
fvClassVal.add("positive");
fvClassVal.add("negative");
Attribute ClassAttribute = new Attribute("theClass", fvClassVal);

// Declare the feature vector
ArrayList<Attribute> fvWekaAttributes = new ArrayList(4);
fvWekaAttributes.add(Attribute1);
fvWekaAttributes.add(Attribute2);
fvWekaAttributes.add(Attribute3);
fvWekaAttributes.add(ClassAttribute);

// Create an empty training set
Instances isTrainingSet = new Instances("Rel", fvWekaAttributes, 10);
// Set class index
isTrainingSet.setClassIndex(3);

// Create the instance
Instance ex1 = new DenseInstance(4);
ex1.setValue((Attribute) fvWekaAttributes.get(0), 1.0);
ex1.setValue((Attribute) fvWekaAttributes.get(1), 5.5);
ex1.setValue((Attribute) fvWekaAttributes.get(2), "gray");
ex1.setValue((Attribute) fvWekaAttributes.get(3), "positive");

Instance ex2 = new DenseInstance(4);
ex1.setValue((Attribute) fvWekaAttributes.get(0), 1.0);
ex1.setValue((Attribute) fvWekaAttributes.get(1), 5.5);
ex1.setValue((Attribute) fvWekaAttributes.get(2), "blue");
ex1.setValue((Attribute) fvWekaAttributes.get(3), "negative");

// add the instance
isTrainingSet.add(ex1);
isTrainingSet.add(ex2);

// Create a naïve bayes classifier
Classifier cModel = (Classifier) new NaiveBayes();
cModel.buildClassifier(isTrainingSet);

Instance testData = new DenseInstance(4);
testData.setValue((Attribute) fvWekaAttributes.get(0), 1.0);
testData.setValue((Attribute) fvWekaAttributes.get(1), 5.5);
testData.setValue((Attribute) fvWekaAttributes.get(2), "gray");

Instances testDataSet = new Instances("Rel", fvWekaAttributes, 1);
testDataSet.setClassIndex(3);
testDataSet.add(testData);

double[] a = cModel.distributionForInstance(testDataSet.firstInstance());
for(int i=0;i<a.length;i++){
System.out.println(a[i]);
}
}

但结果似乎并不正确。结果如下:

6.702810252023562E-151

1.0

即使我将 testData 更改为:

testData.setValue((Attribute) fvWekaAttributes.get(0), 1.0);
testData.setValue((Attribute) fvWekaAttributes.get(1), 5.5);
testData.setValue((Attribute) fvWekaAttributes.get(2), "blue");

结果差不多是这样。如下:

3.351405126011781E-151

1.0

最佳答案

在我看来,问题在于训练集中只有两个实例,并且 naiv baies 分类器无法从中学习有值(value)的模型。这就是为什么你得到了坦白结果。尝试生成至少 100 个或更多训练实例,或者在这里您可以找到一些示例数据集来学习如何应用 ML 方法:http://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html

关于java - 韦卡分类器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37977576/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com