gpt4 book ai didi

python - 使用 numpy 加载和存储稀疏数据的性能

转载 作者:行者123 更新时间:2023-12-01 09:33:43 25 4
gpt4 key购买 nike

我考虑过自定义稀疏数据格式。它的目的是为了节省空间的存储和加载,而不是对其进行计算。本质是存储非零条目的索引和值。我想知道是否有一些调整可以提高性能。

处理这样的数据就产生了这种需求:N 个“图像”(32x32),每个图像有四个 channel 。这些图像平均包含约 5% 的非零值。随着 N 变得非常大,将所有图像存储在 RAM 中效率很低。因此,仅存储非零条目的数量、它们的索引和值以及原始形状。

以下是如何实现此功能的示例:

import numpy as np


def disassemble_data(data):
# get some dense data and make it sparse
lengths = np.count_nonzero(data, axis=(1, 2, 3))
idxs = np.flatnonzero(data)
vals = data.ravel()[idxs]

return lengths, idxs, vals, data.shape


def assemble_data(lengths, idxs, vals, shape):
# get some sparse data and make it dense
data = np.zeros(shape)

lower_idx = 0
for length in lengths:
upper_idx = lower_idx + length
data.ravel()[idxs[lower_idx:upper_idx]] = vals[lower_idx:upper_idx]
lower_idx = upper_idx
return data


# Create some dummy data
my_data = np.random.uniform(0, 1, (10, 4, 32, 32))
my_data[my_data > 0.05] = 0

# make data sparse and then dense again
my_new_data = assemble_data(*disassemble_data(my_data))

# assert that this actually works
assert np.allclose(my_data, my_new_data)

现在,我们可以直接看到优点:数据是逐幅致密化的。这使我们能够将整个数据集加载到 RAM 中,并通过生成器按需生成密集图像:

def image_generator(lengths, idxs, vals, shape):          
idxs %= np.prod(shape[1:])

lower_idx = 0
for length in lengths:
upper_idx = lower_idx + length
data = np.zeros(shape[1:])
data.ravel()[idxs[lower_idx:upper_idx]] = vals[lower_idx:upper_idx]
lower_idx = upper_idx
yield data

此外,还可以生成批量图像:

def image_batch_generator(lengths, idxs, vals, shape, batch_size):
idxs %= np.prod((batch_size, *shape[1:]))
lengths = np.sum(lengths.reshape(-1, batch_size), axis=1)

lower_idx = 0
for length in lengths:
upper_idx = lower_idx + length
data = np.zeros((batch_size, *shape[1:]))
data.ravel()[idxs[lower_idx:upper_idx]] = vals[lower_idx:upper_idx]
lower_idx = upper_idx
yield data

对于我的需求来说,这是一个相当方便的方法。但我想知道是否有可能加快速度。

例如我看到 numpys 项集比直接赋值更快(根据 docs )。但它仅适用于单个项目,不适用于索引数组。

还有其他方法吗?我对 cython 等一点也不熟悉,所以我很乐意得到一些提示!

最佳答案

我测试了一些如何更有效地完成此操作,并发现对于 np.random.uniform 生成的高度不相关的数据,您的方法一点也不差。根据实际数据,这可能有点不同。

我稍微提高了你的函数的速度,压缩速度为 1.4GB/s,解压缩速度为 1.2GB/s,这还不错。使用 h5py (blosclz),我只能达到大约 450MB/s,但也将数据写入磁盘。

改进的稀疏算法

import numpy as np
import numba as nb

#We can use uint16 on (4,32,32), since max. idx<2**16
@nb.jit()
def to_sparse_data_uint16(data):
data_flat=data.reshape(-1)

idx=np.empty(data.size,dtype=np.uint16)
data_out=np.empty(data.size,dtype=data.dtype)

ii=0
for i in range(data_flat.shape[0]):
if (data_flat[i]!=0):
idx[ii]=i
data_out[ii]=data_flat[i]
ii+=1

return idx[0:ii], data_out[0:ii], data.shape


def to_dense_data(idx,data,shape):
length=np.prod(shape)
data_out=np.zeros(length,dtype=data.dtype)

data_out[idx]=data

return data_out.reshape(shape)


########################
#do you really need float64 here?
images = np.array(np.random.uniform(0, 1, (100000, 4, 32, 32)),dtype=np.float32)
images[images > 0.05] = 0.

res=[]
t1=time.time()
for i in range(100000):
res.append(to_sparse_data_uint16(images[i,:,:,:]))

print(time.time()-t1)

t1=time.time()
for i in range(100000):
data=to_dense_data(res[i][0],res[i][1],res[i][2])

print(time.time()-t1)

HDF5 示例

import numpy as np
import tables #register blosc
import h5py as h5
import h5py_cache as h5c
import time

# I assume here that you don't need float64 for images..
# 1650MB Testdata

images = np.array(np.random.uniform(0, 1, (100000, 4, 32, 32)),dtype=np.float32)
images[images > 0.05] = 0.

#Write data (32,7 GB uncompressed)
hdf5_path='Test.h5'
f = h5c.File(hdf5_path, 'w',chunk_cache_mem_size=1024**2*100) #200 MB cache size
dset_images = f.create_dataset("images", shape=(20*100000, 4, 32, 32),dtype=np.float32,chunks=(1000, 4, 32, 32),compression=32001,compression_opts=(0, 0, 0, 0, 9, 1, 1), shuffle=False)

t1=time.time()
#Don't call h5py to often, this will lead to bad performance
for i in range(20):
dset_images[i*100000:(i+1)*100000,:,:,:]=images

f.close()
print(time.time()-t1)

print("MB/s: " + str(32700/(time.time()-t1)))

关于python - 使用 numpy 加载和存储稀疏数据的性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49724629/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com