- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我写了下面的代码。它是一个 ODE
,其中有一个参数作为另一个 ODE。正如我们所见,M(m0,z,b,c)
用于另一个ODE
,它本身就是一个ODE
函数。代码非常慢,有人能给我建议如何改进它吗?
import numpy as np
from scipy.integrate import odeint
def model(m,z,c,b):
dmdt = ((c**2-m)/(1+z))*(6-9*(m/c**2)+3*b*(m+(m**2)))
return dmdt
def M(m0,z,c,b):
m = odeint(model,m0,[0,z], args= (c, b))
mm=m[-1,0]
return mm
def model1(H ,z,m0,c,b):
c = 0.6
b=0.035
dHdt = (H/(1+z))*(6-9*(M(m0,z,c,b)/c**2)+3*b*(M(m0,z,c,b)+(M(m0,z,c,b)**2)))
return dHdt
def model2(H0,z,m0,c,b):
H = odeint(model1,H0,[0,z], args=(m0,c,b))
HH=H[-1,0]
return HH
print(model2(70,1,0.75,0.69,0.035))
最佳答案
您可以将耦合系统作为耦合系统进行求解。
def model(U,z,c,b):
M, H = U
dMdt = ((c**2-M)/(1+z))*(6-9*(M/c**2)+3*b*(M+M**2))
dHdt = (H /(1+z))*(6-9*(M/c**2)+3*b*(M+M**2))
return [dMdt, dHdt]
def solution(H0,z,m0,c,b):
U = odeint(model,[m0,H0],[0,z], args=(c,b))[-1]
M, H = U
return H
print(solution(70,1,0.75,0.69,0.035))
当您的代码进行修改时,它会快速返回0.107569653042
def model1(H, z, m0, c, b):
mm = M(m0,z,c,b)
dHdt = (H/(1+z))*(6-9*(mm/c**2)+3*b*(mm+(mm)**2)))
return dHdt
返回类似的0.107569746892
,速度稍慢。这6位重合数字与1e-6
的默认容错范围一致。
要获得更高精度的结果,请设置误差容限 atol、rtol
的控制参数。
为了进一步减少运营
def model(U,z,c,b):
M, H = U
factor = (6-9*M/c**2+3*b*(M+M**2))/(1+z)
return [(c**2-M)*factor, H*factor]
如果您的任务非常繁重,请使用编译的编程语言来快速进行大量数字运算。
关于python - 在带有参数的另一个 ODE 中使用 ODE 会使代码非常非常慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50136298/
我有以下代码: def multirk4(funcs, x0, y0, step, xmax): n = len(funcs) table = [[x0] + y0] f1,
我写了下面的代码。它是一个 ODE,其中有一个参数作为另一个 ODE。正如我们所见,M(m0,z,b,c) 用于另一个ODE,它本身就是一个ODE 函数。代码非常慢,有人能给我建议如何改进它吗? im
我目前正在尝试使用 SciPy 的 integrate.ode 包来求解一对耦合的一阶 ODE:比如 Lotka-Volterra predator-prey equation .但是,这意味着在集成
我在使用 scipy.integrate.ode 求解两个非常简单的非耦合 ODE 时遇到了问题。例如下面的简单代码: from scipy.integrate import ode def f(
我有以下包含一些颂歌的函数: myfunction 20) { # this is an internal threshold! Y <- 35000
是否使用odeint在这个方程中遇到了问题或 solve_ivp来解决。 import numpy as np from scipy.integrate import solve_ivp import
我有一个函数dφ/dt = γ - F(φ) (其中 F(φ) -- a 是 2π -周期函数)和函数图 F(φ) . 我需要创建一个输出 φ(t) 的 6 个图的程序对于 γ 的不同值(γ = 0.
我正在尝试解决来自 DifferentialEquation 包的典型示例, 根据他们页面上的指南。 这是示例: using DifferentialEquations using Plots fun
我正在尝试复制发布的湖泊食物网络模型 here 。该模型代表两条食物链(沿海与远洋),由顶级捕食者(鱼类)连接。我已经对模型进行了编码,但是当我在 2-3 个时间步骤后运行它时,模型会生成 NaN。我
我正在尝试复制发布的湖泊食物网络模型 here 。该模型代表两条食物链(沿海与远洋),由顶级捕食者(鱼类)连接。我已经对模型进行了编码,但是当我在 2-3 个时间步骤后运行它时,模型会生成 NaN。我
我正在编写一些代码,其中我有以下方程组 here .问题是我非常想解决多个 k 值以及为每个 k 值绘制相平面/颤动图。有人可以帮帮我吗?到目前为止,这是我对求解器的了解: import numpy
我有一些微分方程需要使用 MATLAB 的 ODE 求解器求解。虽然微分方程本身相当简单,但它们取决于很多“常数”。这些常量不是通用的,需要由调用者提供。 这种 ODE 的例子是: dx/dt = -
我有一个看起来像的系统 dn/dt=f(n,v) dh/dt=g(h,v) 我想在流形 F(v,n,h)=0 上求解这个方程,流形是 v 中的非线性函数。我尝试使用类似 v=fzero(@(x) F(
我正在尝试求解具有复杂条目的 ODE 系统。从 GSL 文档可以看出它只接受真实条目。有没有办法传递复杂的(比区分实部和虚部更直接的方法)?如果不可能,您能否为此目的推荐任何其他好的图书馆? 最佳答案
我一直在尝试实现贝叶斯 ODE。在石油工业中,我们使用以下等式来拟合生产数据然后进行预测: ODE 方程描述为: 其中 0 我的初始代码: using DiffEqFlux, OrdinaryDiff
我一直在尝试实现 ODE 模型来模拟胰岛素信号通路,正如 supplementary material 中所介绍的那样的 this paper , 使用 python's GEKKO . 实现的模型变
我们可以使用 deSolve R 中的常微分方程 (ODE) 包,但是,我找不到解决两个嵌套 ODE 方程的方法,假设` b'(t) = beta - k*b(t); a'(t) = alpha -b
我正在尝试找出 Dymola 解决 Modelica 代码所需的步骤。通过阅读一些引用文献和书籍,我了解到 Dymola: 将 Modelica 代码转换为混合 DAE(扁平化)。 操纵 DAE 以将
这是我在这里的第一个问题,所以如果格式被关闭,我很抱歉。 我想将牛顿万有引力定律建模为 Python 中的二阶微分方程,但结果图没有意义。供引用,here's the equation和[这是结果][
如何使用 Sympy 求解矩阵微分方程? 我有一个形式为 y'(t) = A*y(t) + B 的方程,其中 A 是一个 3x3 矩阵,y(t) 是一个 1x3 向量,B 是一个 1x3 向量。 更具
我是一名优秀的程序员,十分优秀!