gpt4 book ai didi

python - Tensorflow Restore() 缺少 1 个必需的位置参数 : 'save_path'

转载 作者:行者123 更新时间:2023-12-01 09:27:12 24 4
gpt4 key购买 nike

我正在尝试使用 Python 创建一个基于爱尔兰数据集的神经网络,该网络将根据我输入的数组预测花的类型。这就是我的神经网络的样子

    names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'species']  
train = pd.read_csv(dataset, names=names, skiprows=1)
test = pd.read_csv(test_dataset, names=names, skiprows=1)
Xtrain = train.drop("species" , axis = 1)
Xtest = train.drop("species" , axis = 1)

ytrain = pd.get_dummies(train.species)
ytest = pd.get_dummies(test.species)
def create_train_model(hidden_nodes, num_iters):

# Reset the graph
tf.reset_default_graph()

# Placeholders for input and output data
X = tf.placeholder(shape=(120, 4), dtype=tf.float64, name='X')
y = tf.placeholder(shape=(120, 3), dtype=tf.float64, name='y')

# Variables for two group of weights between the three layers of the network
W1 = tf.Variable(np.random.rand(4, hidden_nodes), dtype=tf.float64)
W2 = tf.Variable(np.random.rand(hidden_nodes, 3), dtype=tf.float64)

# Create the neural net graph
A1 = tf.sigmoid(tf.matmul(X, W1))
y_est = tf.sigmoid(tf.matmul(A1, W2))

# Define a loss function
deltas = tf.square(y_est - y)
loss = tf.reduce_sum(deltas)

# Define a train operation to minimize the loss
optimizer = tf.train.GradientDescentOptimizer(0.005)
train = optimizer.minimize(loss)

# Initialize variables and run session
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)

# Go through num_iters iterations
for i in range(num_iters):
sess.run(train, feed_dict={X: Xtrain, y: ytrain})
loss_plot[hidden_nodes].append(sess.run(loss, feed_dict={X: Xtrain.as_matrix(), y: ytrain.as_matrix()}))
weights1 = sess.run(W1)
weights2 = sess.run(W2)

print("loss (hidden nodes: %d, iterations: %d): %.2f" % (hidden_nodes, num_iters, loss_plot[hidden_nodes][-1]))
save_path = saver.save(sess, model_path , hidden_nodes)
print("Model saved in path: %s" % save_path)
return weights1, weights2
# Plot the loss function over iterations
num_hidden_nodes = [5, 10, 20]
loss_plot = {5: [], 10: [], 20: []}
weights1 = {5: None, 10: None, 20: None}
weights2 = {5: None, 10: None, 20: None}
num_iters = 2000

plt.figure(figsize=(12,8))
for hidden_nodes in num_hidden_nodes:
weights1[hidden_nodes], weights2[hidden_nodes] = create_train_model(hidden_nodes, num_iters)
plt.plot(range(num_iters), loss_plot[hidden_nodes], label="nn: 4-%d-3" % hidden_nodes)

plt.xlabel('Iteration', fontsize=12)
plt.ylabel('Loss', fontsize=12)
plt.legend(fontsize=12)

一切都运行良好。模型正在保存,所有训练进展顺利。但是当我输入数组并恢复模型时,我收到错误

new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
with tf.Session() as sess:
saver = tf.train.Saver
saver.restore(sess , model_path , str(hidden_nodes))
y_est_val = sess.run(y_est, feed_dict={X: new_samples})

在此之后,我收到错误缺少 1 个必需的位置参数:'save_path'。我不知道可能是什么问题。错误在这一行

saver.restore(sess , model_path , hidden_nodes)

我看了一些教程,他们有相同的代码,并且对他们有用

最佳答案

模型恢复似乎有问题。首先,使用 import_meta_graph 创建图表,然后使用 saver.restore 将参数恢复到图表。

还有其他问题,例如在恢复图形时,您需要使用 get_tensor_by_name 加载张量,因此您可以适本地命名张量。

以下是您可能需要进行的更改:

# The test batch size is different from the hard-coded batch_size in the original graph, so replace `120` to `None` in the placeholders of X and y.
new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)

tf.reset_default_graph()
graph = tf.Graph()

with graph.as_default():

with tf.Session() as sess:

# Create the network, load the meta file appropriately.
saver = tf.train.import_meta_graph('{your meta file for the hidden unit}.meta')
# Load the parameters
saver.restore(sess , tf.train.latest_checkpoint(model_path))
# Get the tensors from the graph.
X = graph.get_tensor_by_name("X:0")

# `y_est` is not named in your graph: change to y_est = tf.identity(tf.sigmoid(tf.matmul(A1, W2)), 'y_est')
y_est = graph.get_tensor_by_name("y_est:0")

y_est_val = sess.run(y_est, feed_dict={X: new_samples})

注意:您需要不同的检查点而不覆盖它们,所以这样做:

 save_path = saver.save(sess, model_dir+str(hidden_nodes)+'/' , hidden_nodes ).

关于python - Tensorflow Restore() 缺少 1 个必需的位置参数 : 'save_path' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50284112/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com