- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Python 创建一个基于爱尔兰数据集的神经网络,该网络将根据我输入的数组预测花的类型。这就是我的神经网络的样子
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'species']
train = pd.read_csv(dataset, names=names, skiprows=1)
test = pd.read_csv(test_dataset, names=names, skiprows=1)
Xtrain = train.drop("species" , axis = 1)
Xtest = train.drop("species" , axis = 1)
ytrain = pd.get_dummies(train.species)
ytest = pd.get_dummies(test.species)
def create_train_model(hidden_nodes, num_iters):
# Reset the graph
tf.reset_default_graph()
# Placeholders for input and output data
X = tf.placeholder(shape=(120, 4), dtype=tf.float64, name='X')
y = tf.placeholder(shape=(120, 3), dtype=tf.float64, name='y')
# Variables for two group of weights between the three layers of the network
W1 = tf.Variable(np.random.rand(4, hidden_nodes), dtype=tf.float64)
W2 = tf.Variable(np.random.rand(hidden_nodes, 3), dtype=tf.float64)
# Create the neural net graph
A1 = tf.sigmoid(tf.matmul(X, W1))
y_est = tf.sigmoid(tf.matmul(A1, W2))
# Define a loss function
deltas = tf.square(y_est - y)
loss = tf.reduce_sum(deltas)
# Define a train operation to minimize the loss
optimizer = tf.train.GradientDescentOptimizer(0.005)
train = optimizer.minimize(loss)
# Initialize variables and run session
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)
# Go through num_iters iterations
for i in range(num_iters):
sess.run(train, feed_dict={X: Xtrain, y: ytrain})
loss_plot[hidden_nodes].append(sess.run(loss, feed_dict={X: Xtrain.as_matrix(), y: ytrain.as_matrix()}))
weights1 = sess.run(W1)
weights2 = sess.run(W2)
print("loss (hidden nodes: %d, iterations: %d): %.2f" % (hidden_nodes, num_iters, loss_plot[hidden_nodes][-1]))
save_path = saver.save(sess, model_path , hidden_nodes)
print("Model saved in path: %s" % save_path)
return weights1, weights2
# Plot the loss function over iterations
num_hidden_nodes = [5, 10, 20]
loss_plot = {5: [], 10: [], 20: []}
weights1 = {5: None, 10: None, 20: None}
weights2 = {5: None, 10: None, 20: None}
num_iters = 2000
plt.figure(figsize=(12,8))
for hidden_nodes in num_hidden_nodes:
weights1[hidden_nodes], weights2[hidden_nodes] = create_train_model(hidden_nodes, num_iters)
plt.plot(range(num_iters), loss_plot[hidden_nodes], label="nn: 4-%d-3" % hidden_nodes)
plt.xlabel('Iteration', fontsize=12)
plt.ylabel('Loss', fontsize=12)
plt.legend(fontsize=12)
一切都运行良好。模型正在保存,所有训练进展顺利。但是当我输入数组并恢复模型时,我收到错误
new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
with tf.Session() as sess:
saver = tf.train.Saver
saver.restore(sess , model_path , str(hidden_nodes))
y_est_val = sess.run(y_est, feed_dict={X: new_samples})
在此之后,我收到错误缺少 1 个必需的位置参数:'save_path'
。我不知道可能是什么问题。错误在这一行
saver.restore(sess , model_path , hidden_nodes)
我看了一些教程,他们有相同的代码,并且对他们有用
最佳答案
模型恢复似乎有问题。首先,使用 import_meta_graph
创建图表,然后使用 saver.restore
将参数恢复到图表。
还有其他问题,例如在恢复图形时,您需要使用 get_tensor_by_name
加载张量,因此您可以适本地命名张量。
以下是您可能需要进行的更改:
# The test batch size is different from the hard-coded batch_size in the original graph, so replace `120` to `None` in the placeholders of X and y.
new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
with tf.Session() as sess:
# Create the network, load the meta file appropriately.
saver = tf.train.import_meta_graph('{your meta file for the hidden unit}.meta')
# Load the parameters
saver.restore(sess , tf.train.latest_checkpoint(model_path))
# Get the tensors from the graph.
X = graph.get_tensor_by_name("X:0")
# `y_est` is not named in your graph: change to y_est = tf.identity(tf.sigmoid(tf.matmul(A1, W2)), 'y_est')
y_est = graph.get_tensor_by_name("y_est:0")
y_est_val = sess.run(y_est, feed_dict={X: new_samples})
注意:您需要不同的检查点而不覆盖它们,所以这样做:
save_path = saver.save(sess, model_dir+str(hidden_nodes)+'/' , hidden_nodes ).
关于python - Tensorflow Restore() 缺少 1 个必需的位置参数 : 'save_path' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50284112/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!