gpt4 book ai didi

python - 对抗性判别域适应(ADDA)

转载 作者:行者123 更新时间:2023-12-01 09:24:12 27 4
gpt4 key购买 nike

我正在尝试在 Keras 中实现 ADDA。这是我的代码:

class ADDA_Images(object):

def __init__(self,modelInput):
self.img_rows = 28
self.img_cols = 28
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)

optimizer = opt.Adam(0.001)

self.source_generator = self.build_generator(modelInput)
self.target_generator = self.build_generator(modelInput)

outputFeatureExtraction = layers.Input(shape = self.target_generator.output_shape[1:])
self.source_classificator = self.build_classifier(outputFeatureExtraction)


self.discriminator_model = self.build_discriminator(outputFeatureExtraction)
self.discriminator_model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
self.discriminator_model.name='disk'

input = layers.Input(shape=self.img_shape)
fe_rep = self.source_generator(input)
cl = self.source_classificator(fe_rep)
self.source_model = Model(input,cl)
self.source_model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])

input = layers.Input(shape=self.img_shape)
fe_rep = self.target_generator(input)
cl = self.source_classificator(fe_rep)
self.target_model = Model(input, cl)
self.target_model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])

self.combined_model = Sequential()
self.combined_model.add(self.target_generator)
self.combined_model.add(self.discriminator_model)
self.combined_model.get_layer('disk').trainable = False
self.combined_model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])

print('Source model')
self.source_model.summary()

print('Target model')
self.target_model.summary()

print('Discriminator')
self.discriminator_model.summary()

print('Combined model')
self.combined_model.summary()

def build_generator(self,modelInput):

gen = layers.Conv2D(filters=20, kernel_size=5, padding='valid')(modelInput)
gen = layers.MaxPooling2D(pool_size=2, strides=2)(gen)
gen = layers.Conv2D(filters=50, kernel_size=5, padding='valid')(gen)
gen = layers.MaxPooling2D(pool_size=2, strides=2)(gen)
gen = layers.Flatten()(gen)

model = Model(modelInput,gen)
print('Generator summary')
model.summary()
return model

def build_classifier(self,modelInput):

cl = layers.Dense(3072, activation='relu')(modelInput)
cl = layers.Dense(2048, activation='relu')(cl)
cl = layers.Dense(10, activation='softmax')(cl)

model = Model(modelInput,cl)
print('Classificatior summary')
model.summary()
return model

def build_discriminator(self,modelInput):

disc = layers.Dense(500, activation='relu')(modelInput)
disc = layers.Dense(500, activation='relu')(disc)
disc = layers.Dense(2, activation='softmax')(disc)

model = Model(modelInput,disc)
print('Discriminator summary')
model.summary()
return model

但是,target_generator 似乎没有连接到目标模型。我从预训练的源模型加载目标模型,然后以 ADDA 方式训练鉴别器和组合模型。但是,目标模型没有改变。它始终具有与源模型相同的预测(accs 和loss)。

以下是模型摘要:

Source model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 28, 28, 3) 0
_________________________________________________________________
model_1 (Model) (None, 800) 26570
_________________________________________________________________
model_3 (Model) (None, 10) 8774666
=================================================================
Total params: 8,801,236
Trainable params: 8,801,236
Non-trainable params: 0
_________________________________________________________________
Target model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, 28, 28, 3) 0
_________________________________________________________________
model_2 (Model) (None, 800) 26570
_________________________________________________________________
model_3 (Model) (None, 10) 8774666
=================================================================
Total params: 8,801,236
Trainable params: 8,801,236
Non-trainable params: 0
_________________________________________________________________
Discriminator
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 800) 0
_________________________________________________________________
dense_4 (Dense) (None, 500) 400500
_________________________________________________________________
dense_5 (Dense) (None, 500) 250500
_________________________________________________________________
dense_6 (Dense) (None, 2) 1002
=================================================================
Total params: 1,304,004
Trainable params: 652,002
Non-trainable params: 652,002
_________________________________________________________________
Combined model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_2 (Model) (None, 800) 26570
_________________________________________________________________
disk (Model) (None, 2) 652002
=================================================================
Total params: 678,572
Trainable params: 26,570
Non-trainable params: 652,002

我验证了 target_model 第二层的输出(根据规范,它应该是 target_generator),它与 target_generator 的输出不同(在相同的输入上)。因此,这两个模型似乎并没有如摘要中报告的那样相互关联。

有人可以帮我找出问题所在吗?

我正在使用 Keras 2、Tensorflow 后端。

最佳答案

问题出在训练部分 - 我将预训练源模型 (load_model) 加载到目标模型中,这导致了问题,因为它更改了对生成器模型的引用。我应该使用 load_weights 而不是 load_model

因此,加载可以工作且不会对引用造成问题的预训练模型是:

    source_model = load_model(modelName)
target_model.set_weights(source_model.get_weights())

关于python - 对抗性判别域适应(ADDA),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50571245/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com