- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 pandas 中遇到问题,我对数据进行了许多更改。但最终我不知道是哪个变化导致了该列中值的最终状态。
例如,我像这样改变音量。但我运行了很多这样的检查:
# Last check
for i in range(5):
df_gp.tail(1).loc[ (df_gp['volume']<df_gp['volume'].shift(1)) | (df_gp['volume']<0.4),['new_volume'] ] = df_gp['new_volume']*1.1
如果满足条件,我不仅要更新“new_volume”列,还要更新“commentary”列。
是否可以将其添加到某处,以便我的“评论”与“new_volume”同时更新?
谢谢!
最佳答案
是的,可以通过assign
,但在我看来可读性较差,更好的是通过变量中缓存的 bool 掩码分别更新每列:
df_gp = pd.DataFrame({'volume':[.1,.3,.5,.7,.1,.7],
'new_volume':[5,3,6,9,2,4],
'commentary':list('aaabbb')})
print (df_gp)
volume new_volume commentary
0 0.1 5 a
1 0.3 3 a
2 0.5 6 a
3 0.7 9 b
4 0.1 2 b
5 0.7 4 b
<小时/>
#create boolean mask and assign to variable for reuse
m = (df_gp['volume']<df_gp['volume'].shift(1)) | (df_gp['volume']<0.4)
#change columns by assign by condition and assign back only filtered columns
c = ['commentary','new_volume']
df_gp.loc[m, c] = df_gp.loc[m, c].assign(new_volume=df_gp['new_volume']*1.1
commentary='updated')
print (df_gp)
volume new_volume commentary
0 0.1 5.5 updated
1 0.3 3.3 updated
2 0.5 6.0 a
3 0.7 9.0 b
4 0.1 2.2 updated
5 0.7 4.0 b
<小时/>
#multiple filtered column by scalar
df_gp.loc[m, 'new_volume'] *= 1.1
#append new value to filtered column
df_gp.loc[m, 'commentary'] = 'updated'
print (df_gp)
volume new_volume commentary
0 0.1 5.5 updated
1 0.3 3.3 updated
2 0.5 6.0 a
3 0.7 9.0 b
4 0.1 2.2 updated
5 0.7 4.0 b
关于Python Pandas .loc 一次更新 2 列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50835902/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!