- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
model3=models.Sequential()
model3.add(Conv2D(32,
(3,3),padding='same',kernel_regularizer=reg,input_shape=X_train.shape[1:]))
model3.add(BatchNormalization(axis=-1))
model3.add(Activation(activation='relu'))
model3.add(Dropout(0.2))
model3.add(Conv2D(32,(3,3),padding='same',kernel_regularizer=reg))
model3.add(BatchNormalization(axis=-1))
model3.add(Activation(activation='relu'))
model3.add(Dropout(0.2))
我有兴趣知道两个卷积层之间的 dropout 是如何工作的。如果L
层中特征图的维度为(m, n_h, n_w, n_c)
并且过滤器大小为(f, f, n_c)
> 对其进行卷积,在执行卷积之前,我们是否会随机关闭层 L
中 n_c
channel 上的一些单元? MaxPool 层上的 Dropout 很简单。
批量归一化
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
_________________________________________________________________
batch_normalization_1 (Batch (None, 32, 32, 32) 128
________________________________________________________________
第三列是该层的参数数量。对于batchnorm层,我们是否标准化批处理中的每个特征图,以便对于每个特征图我们将有4个参数,因此在我的例子中,我有32*4 = 128
参数?如果我错了,有人可以纠正我。我认为我的假设是错误的,因为我在某处读到我们在整个 channel 上进行了标准化。但这并没有计算出各层参数的数量。
最佳答案
对于 BatchNormalization
层,如果您阅读其 doc/source code仔细看,它的参数个数取决于以下四个参数:
def build(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError('Axis ' + str(self.axis) + ' of '
'input tensor should have a defined dimension '
'but the layer received an input with shape ' +
str(input_shape) + '.')
self.input_spec = InputSpec(ndim=len(input_shape),
axes={self.axis: dim})
shape = (dim,)
if self.scale:
self.gamma = self.add_weight(shape=shape,
name='gamma',
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
else:
self.gamma = None
if self.center:
self.beta = self.add_weight(shape=shape,
name='beta',
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
else:
self.beta = None
self.moving_mean = self.add_weight(
shape=shape,
name='moving_mean',
initializer=self.moving_mean_initializer,
trainable=False)
self.moving_variance = self.add_weight(
shape=shape,
name='moving_variance',
initializer=self.moving_variance_initializer,
trainable=False)
self.built = True
其中每个变量的形状为 (dim,)
,在您的情况下为 32。由于有四个变量,因此参数总数为 32x4=128
。然而,后两个,即 moving_mean
和 moving_variance
是不可训练的。
对于Dropout
层的使用,我认为在拥有基线模型之前你不需要担心它。有了基线模型后,您可以通过添加额外的 dropout 层来改进它。当然,退出率应该取决于您的任务,您可能必须尝试不同的退出率,看看哪一个最有效。
关于python - 两个 Conv 层之间的 Dropout 和 Batchnormalization,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51001996/
我遇到过上述术语,但不确定它们之间的区别。 我的理解是 MC dropout 是正常的 dropout,它在测试期间也是活跃的,允许我们在多次测试运行中得到模型不确定性的估计。至于 channel-w
我正在从 deeplearning.ai 学习神经网络中的正则化类(class)。在 dropout 正则化中,教授说如果应用 dropout,计算的激活值将小于未应用 dropout 时(测试时)。
有两种方法可以执行dropout: torch.nn.Dropout torch.nn.function.Dropout 我问: 它们之间有区别吗? 我什么时候应该使用其中一种而不是另一种? 当我切换
根据此链接,keep_prob 的值必须在 (0,1] 之间: Tensorflow manual 否则我会得到值错误: ValueError: If keep_prob is not in (0,
我想在训练时从每个批处理的顺序 Keras 模型中的 dropout 层中提取并存储 dropout mask [1/0 数组]。我想知道在 Keras 中是否有一种直接的方法可以做到这一点,或者我是
来自 Keras 文档: dropout:在 0 和 1 之间 float 。要丢弃的单位分数 输入的线性变换。 recurrent_dropout:在 0 和 1 之间 float 。 drop 用
keras中的Dropout层与dropout和recurrent_droput参数有什么区别?它们都有相同的目的吗? 示例: model.add(Dropout(0.2)) # layer mod
我很困惑是使用 tf.nn.dropout 还是 tf.layers.dropout。 许多 MNIST CNN 示例似乎使用 tf.nn.droput,将 keep_prop 作为参数之一。 但它与
我目前正在尝试使用 Keras( tensorflow 后端)建立一个(LSTM)循环神经网络。我想使用带有 MC Dropout 的变分 dropout。我相信变分 dropout 已经通过 LST
tensorflow config dropout wrapper具有可以设置的三种不同的丢失概率:input_keep_prob、output_keep_prob、state_keep_prob。
tensorflow config dropout wrapper具有可以设置的三种不同的丢失概率:input_keep_prob、output_keep_prob、state_keep_prob。
我想在我的网络中添加 word dropout,以便我可以有足够的训练示例来训练“unk”标记的嵌入。据我所知,这是标准做法。假设unk token的索引为0,padding的索引为1(方便的话我们可
dropout 层只应该在模型训练期间使用,而不是在测试期间使用。 如果我的 Keras 序列模型中有一个 dropout 层,我是否需要在做之前做一些事情来删除或沉默它 model.predict(
我试图了解辍学对验证平均绝对误差(非线性回归问题)的影响。 无辍学 辍学率为 0.05 辍学率为 0.075 在没有任何 dropouts 的情况下,验证损失大于训练损失,如1所示。我的理解是,验证损
玩具回归示例。使用 dropout=0.0 这很好用并且成本降低了。使用 dropout=0.5 我得到错误: ValueError: Got num_leading_axes=1 for a 1-d
如何在训练期间更改 Dropout?例如 Dropout= [0.1, 0.2, 0.3] 我尝试将其作为列表传递,但我无法使其工作。 最佳答案 要在训练过程中改变 dropout 概率,您应该使用
我有一个用多个 LayerNormalization 层训练的模型,我不确定在激活 dropout 进行预测时简单的权重转移是否正常工作。这是我正在使用的代码: from tensorflow.ker
我正在训练一个带有 dropout 的神经网络。碰巧的是,当我将 dropout 从 0.9 减少到 0.7 时,训练数据数据的损失(交叉验证错误)也会减少。我还注意到,随着我减少 dropout 参
根据 Keras 文档,dropout 层在训练和测试阶段表现出不同的行为: Note that if your model has a different behavior in training
我已经在多个地方看到您应该在验证和测试阶段禁用 dropout,并且只在训练阶段保留它。有什么理由让这种情况发生吗?我一直找不到一个很好的理由,只是想知道。 我问的一个原因是因为我训练了一个带有 dr
我是一名优秀的程序员,十分优秀!