gpt4 book ai didi

python - 无法将 Tensorflow 模型卡住到卡住(.pb)文件中

转载 作者:行者123 更新时间:2023-12-01 09:12:22 30 4
gpt4 key购买 nike

我指的是( here )将模型卡住到 .pb 文件中。我的模型是用于文本分类的 CNN,我正在使用 ( Github ) 链接来训练 CNN 以进行文本分类并以模型的形式导出。我已将模型训练到 4 个纪元,我的检查点文件夹如下所示:

enter image description here

我想将此模型卡住到(.pb 文件)中。为此,我使用以下脚本:

import os, argparse

import tensorflow as tf

# The original freeze_graph function
# from tensorflow.python.tools.freeze_graph import freeze_graph

dir = os.path.dirname(os.path.realpath(__file__))

def freeze_graph(model_dir, output_node_names):
"""Extract the sub graph defined by the output nodes and convert
all its variables into constant
Args:
model_dir: the root folder containing the checkpoint state file
output_node_names: a string, containing all the output node's names,
comma separated
"""
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir)

if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1

# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path

# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb"

# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True

# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)

# We restore the weights
saver.restore(sess, input_checkpoint)

# We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)

# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))

return output_graph_def

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str, default="", help="Model folder to export")
parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.")
args = parser.parse_args()

freeze_graph(args.model_dir, args.output_node_names)

我正在使用以下参数解析器来运行上面的代码

python3 freeze_graph.py --model_dir /Users/path_to_checkpoints/ --output_node_names softmax

出现错误

    assert d in name_to_node_map, "%s is not in graph" % d
AssertionError: softmax is not in graph

我的模型是用于文本分类的 CNN。我应该在output_node_names中写什么?在输出中生成成功的 .pb 文件

最佳答案

使用下面的脚本打印张量...最后一个张量将是输出张量。原作者:https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

import argparse
import tensorflow as tf


def print_tensors(pb_file):
print('Model File: {}\n'.format(pb_file))
# read pb into graph_def
with tf.gfile.GFile(pb_file, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())

# import graph_def
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def)

# print operations
for op in graph.get_operations():
print(op.name + '\t' + str(op.values()))


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--pb_file", type=str, required=True, help="Pb file")
args = parser.parse_args()
print_tensors(args.pb_file)

关于python - 无法将 Tensorflow 模型卡住到卡住(.pb)文件中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51549549/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com