- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面是我得到一些帮助的脚本。我想修改它,给我 2 个带有 3 个可能变量的新列。 日期 |游戏PK |首页 |居家休息|离开 |外出休息
当前的 matches.csv
格式为 Date |游戏PK |首页 |离开
主场休息
和 客场休息
(如果球队前一天参加过比赛,则为 -1;如果球队当天没有参加比赛,则为 1)先前与这样做的对手进行比较,否则为 0)
任何有关如何创建列并为其编写此语句的信息将不胜感激。
import csv
import requests
import datetime
from pprint import pprint
import time
import pandas as pd
kp = []
for i in range(20001,20070):
req = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?site=en_nhl&gamePk=20180' + str(i) + '&leaderGameTypes=R&expand=schedule.broadcasts.all,schedule.radioBroadcasts,schedule.teams,schedule.ticket,schedule.game.content.media.epg')
data = req.json()
for item in data['dates']:
date = item['date']
games = item['games']
for game in games:
gamePk = game['gamePk']
season = game['season']
teams = game['teams']
home = teams['home']
home_tm = home['team']['abbreviation']
away = teams['away']
away_tm = away['team']['abbreviation']
print (date, gamePk, away_tm, home_tm)
kp.append([date, gamePk, away_tm, home_tm])
pprint(kp)
df = pd.DataFrame(kp, columns=['Date','gamePk','Home', 'Away'])
df.to_csv('matches.csv', sep=',', header=True, index=False)
time.sleep(5)
def find_last(match_date, da, team):
home_play = da[da['Home'] == team].tail(1) #then find last matches played at home, select greatest
away_play = da[da['Away'] == team].tail(1) #" " find last matches played at away, select greatest
#then take the last match played, either home or away, whichever is more recent
if home_play.empty and away_play.empty:
print (team, "no_matches before this date")
last_match = 'NA'
elif home_play.empty:
last_match = away_play.Date.item()
elif away_play.empty:
last_match = home_play.Date.item()
else:
last_match = max([home_play.Date.item(), away_play.Date.item()])
if last_match != 'NA':
#And then subtract this from "todays" date (match_date)
duration_since_last = pd.to_datetime(match_date) - pd.to_datetime(last_match)
print ("Team:", team)
print ("Todays game date = ", match_date)
print ("Last match played = ", last_match)
print ("Rest Period = ", duration_since_last)
print()
return duration_since_last
df = pd.read_csv('matches.csv', sep=',')
for k in df.index:
home_team = df.Home[k]
away_team = df.Away[k]
match_date = df.Date[k]
gamePk = df.gamePk[k]
#we want to find all date values less than todays match date.
da = df[df['Date'] < match_date]
## if not da.empty:
for team in [home_team,away_team]:
print ("Record", k, home_team, 'vs', away_team)
find_last(match_date, da, team)
print ('________________________________________')
最佳答案
您提供的脚本已分为不同的部分,以便更好地理解。需要以下新部分来生成您所需的数据帧添加内容:
这是这项工作的 jupyter 笔记本:nhl_stats_parsing
代码:
import csv
import requests
import datetime
from pprint import pprint
import time
import pandas as pd
from pprint import pprint as pp
import json
pd.set_option('max_columns', 100)
pd.set_option('max_rows', 300)
# ### make request to NHL stats server for data and save it to a file
address_p1 = 'https://statsapi.web.nhl.com/api/v1/schedule?site=en_nhl&gamePk=20180'
address_p2 = '&leaderGameTypes=R&expand=schedule.broadcasts.all,schedule.radioBroadcasts,schedule.teams,schedule.ticket,schedule.game.content.media.epg'
with open('data.json', 'w') as outfile:
data_list = []
for i in range(20001,20070): # end 20070
req = requests.get(address_p1 + str(i) + address_p2)
data = req.json()
data_list.append(data) # append each request to the data list; will be a list of dicts
json.dump(data_list, outfile) # save the json file so you don't have to keep hitting the nhl server with your testing
# ### read the json file back in
with open('data.json') as f:
data = json.load(f)
# ### this is what 1 record looks like
for i, x in enumerate(data):
if i == 0:
pp(x)
# ### parse each dict
kp = []
for json_dict in data:
for item in json_dict['dates']:
date = item['date']
games = item['games']
for game in games:
gamePk = game['gamePk']
season = game['season']
teams = game['teams']
home = teams['home']
home_tm = home['team']['abbreviation']
away = teams['away']
away_tm = away['team']['abbreviation']
print (date, gamePk, away_tm, home_tm)
kp.append([date, gamePk, away_tm, home_tm])
# ### create DataFrame and save to csv
df = pd.DataFrame(kp, columns=['Date','gamePk','Home', 'Away'])
df.to_csv('matches.csv', sep=',', header=True, index=False)
# ### read in csv into DataFrame
df = pd.read_csv('matches.csv', sep=',')
print(df.head()) # first 5
## On Game Day, What is the Previous Day
def yesterday(date):
today = datetime.datetime.strptime(date, '%Y-%m-%d')
return datetime.datetime.strftime(today - datetime.timedelta(1), '%Y-%m-%d')
def yesterday_apply(df):
df['previous_day'] = df.apply(lambda row: yesterday(date=row['Date']), axis=1)
yesterday_apply(df)
## Did We Play on the Previous Day
def played_previous_day(df, date, team):
filter_t = f'(Date == "{date}") & ((Home == "{team}") | (Away == "{team}"))'
filtered_df = df.loc[df.eval(filter_t)]
if filtered_df.empty:
return False # didn't play previous day
else:
return True # played previous day
def played_previous_day_apply(df):
df['home_played_previous_day'] = df.apply(lambda row: played_previous_day(df, date=row['previous_day'], team=row['Home']), axis=1)
df['away_played_previous_day'] = df.apply(lambda row: played_previous_day(df, date=row['previous_day'], team=row['Away']), axis=1)
played_previous_day_apply(df)
# # Determine Game Day Handicap
# Home Rest & Away Rest (-1 if the team played the day prior vs a team that didn't, 1 if the team didn't play the day prior vs an opponent who did, 0 otherwise)
def handicap(team, home, away):
if (team == 'home') and not home and away:
return 1
elif (team == 'away') and not home and away:
return -1
elif (team == 'home') and home and not away:
return -1
elif (team == 'away') and home and not away:
return 1
else:
return 0
def handicap_apply(df):
df['home_rest'] = df.apply(lambda row: handicap(team='home', home=row['home_played_previous_day'], away=row['away_played_previous_day']), axis=1)
df['away_rest'] = df.apply(lambda row: handicap(team='away', home=row['home_played_previous_day'], away=row['away_played_previous_day']), axis=1)
handicap_apply(df)
print(df)
# ### data presentation method
def find_last(match_date, da, team):
home_play = da[da['Home'] == team].tail(1) # then find last matches played at home, select greatest
away_play = da[da['Away'] == team].tail(1) # " " find last matches played at away, select greatest
#then take the last match played, either home or away, whichever is more recent
if home_play.empty and away_play.empty:
print (team, "no_matches before this date")
last_match = 'NA'
elif home_play.empty:
last_match = away_play.Date.item()
elif away_play.empty:
last_match = home_play.Date.item()
else:
last_match = max([home_play.Date.item(), away_play.Date.item()])
if last_match != 'NA':
#And then subtract this from "todays" date (match_date)
duration_since_last = pd.to_datetime(match_date) - pd.to_datetime(last_match)
print ("Team:", team)
print ("Todays game date = ", match_date)
print ("Last match played = ", last_match)
print ("Rest Period = ", duration_since_last)
print()
return duration_since_last
# ### produce your output
for k in df.index:
home_team = df.Home[k]
away_team = df.Away[k]
match_date = df.Date[k]
gamePk = df.gamePk[k]
#we want to find all date values less than todays match date.
da = df[df['Date'] < match_date]
## if not da.empty:
for team in [home_team, away_team]:
print ("Record", k, home_team, 'vs', away_team)
find_last(match_date, da, team) # call your method
print('_' * 40)
输出:
Date gamePk Home Away previous_day home_played_previous_day away_played_previous_day home_rest away_rest
0 2018-10-03 2018020001 MTL TOR 2018-10-02 False False 0 0
1 2018-10-03 2018020002 BOS WSH 2018-10-02 False False 0 0
2 2018-10-03 2018020003 CGY VAN 2018-10-02 False False 0 0
3 2018-10-03 2018020004 ANA SJS 2018-10-02 False False 0 0
4 2018-10-04 2018020005 BOS BUF 2018-10-03 True False -1 1
5 2018-10-04 2018020006 NSH NYR 2018-10-03 False False 0 0
6 2018-10-04 2018020007 WSH PIT 2018-10-03 True False -1 1
7 2018-10-04 2018020008 NYI CAR 2018-10-03 False False 0 0
8 2018-10-04 2018020009 CHI OTT 2018-10-03 False False 0 0
关于python - 使用 pandas 创建 2 个新列并根据日期分配变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52129161/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!