- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
当我使用以下方法恢复保存的模型时:
checkpoint = tf.train.get_checkpoint_state(config.pre_model_dir)
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(session, checkpoint.model_checkpoint_path)
,我收到此错误:
INFO:tensorflow:Restoring parameters from ./saved_model/10_zones/10/network--1685000
---------------------------------------------------------------------------
NotFoundError Traceback (most recent call last)
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1321 try:
-> 1322 return fn(*args)
1323 except errors.OpError as e:
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1306 return self._call_tf_sessionrun(
-> 1307 options, feed_dict, fetch_list, target_list, run_metadata)
1308
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
1408 self._session, options, feed_dict, fetch_list, target_list,
-> 1409 run_metadata)
1410 else:
NotFoundError: Key Variable not found in checkpoint
[[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
[[Node: save/RestoreV2/_21 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_18_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
During handling of the above exception, another exception occurred:
NotFoundError Traceback (most recent call last)
<ipython-input-97-0cbd09927b40> in <module>()
42 checkpoint = tf.train.get_checkpoint_state(config.pre_model_dir)
43 if checkpoint and checkpoint.model_checkpoint_path:
---> 44 saver.restore(session, checkpoint.model_checkpoint_path)
45 print("loaded the model")
46 else:
/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py in restore(self, sess, save_path)
1800 else:
1801 sess.run(self.saver_def.restore_op_name,
-> 1802 {self.saver_def.filename_tensor_name: save_path})
1803
1804 @staticmethod
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
898 try:
899 result = self._run(None, fetches, feed_dict, options_ptr,
--> 900 run_metadata_ptr)
901 if run_metadata:
902 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1133 if final_fetches or final_targets or (handle and feed_dict_tensor):
1134 results = self._do_run(handle, final_targets, final_fetches,
-> 1135 feed_dict_tensor, options, run_metadata)
1136 else:
1137 results = []
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1314 if handle is None:
1315 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1316 run_metadata)
1317 else:
1318 return self._do_call(_prun_fn, handle, feeds, fetches)
/usr/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1333 except KeyError:
1334 pass
-> 1335 raise type(e)(node_def, op, message)
1336
1337 def _extend_graph(self):
NotFoundError: Key Variable not found in checkpoint
[[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
[[Node: save/RestoreV2/_21 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_18_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
Caused by op 'save/RestoreV2', defined at:
File "/usr/lib64/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib64/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/lib/python3.6/site-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
app.start()
File "/usr/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
self.io_loop.start()
File "/usr/lib64/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
self.asyncio_loop.run_forever()
File "/usr/lib64/python3.6/asyncio/base_events.py", line 422, in run_forever
self._run_once()
File "/usr/lib64/python3.6/asyncio/base_events.py", line 1432, in _run_once
handle._run()
File "/usr/lib64/python3.6/asyncio/events.py", line 145, in _run
self._callback(*self._args)
File "/usr/lib64/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
handler_func(fileobj, events)
File "/usr/lib64/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
return fn(*args, **kwargs)
File "/usr/lib64/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
self._handle_recv()
File "/usr/lib64/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
self._run_callback(callback, msg)
File "/usr/lib64/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
callback(*args, **kwargs)
File "/usr/lib64/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
return fn(*args, **kwargs)
File "/usr/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
raw_cell, store_history, silent, shell_futures)
File "/usr/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
if self.run_code(code, result):
File "/usr/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-97-0cbd09927b40>", line 26, in <module>
saver = tf.train.Saver()
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1338, in __init__
self.build()
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1347, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1384, in _build
build_save=build_save, build_restore=build_restore)
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 835, in _build_internal
restore_sequentially, reshape)
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 472, in _AddRestoreOps
restore_sequentially)
File "/usr/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 886, in bulk_restore
return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
File "/usr/lib/python3.6/site-packages/tensorflow/python/ops/gen_io_ops.py", line 1463, in restore_v2
shape_and_slices=shape_and_slices, dtypes=dtypes, name=name)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3392, in create_op
op_def=op_def)
File "/usr/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1718, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
NotFoundError (see above for traceback): Key Variable not found in checkpoint
[[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
[[Node: save/RestoreV2/_21 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_18_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
我搜索了这个错误,发现有一个 tf bug,需要使用完整的相对路径调用模型,我按照该路径并尝试了值:'./saved_model/10_zones/10'
和os.path.abspath(config.pre_model_dir+'./../saved_model/10_zones/10')
对于 config.pre_model_dir
。两者都导致了相同的错误。
我还使用检查了保存的变量的名称从tensorflow.contrib.framework.python.framework导入checkpoint_utils
var_list = checkpoint_utils.list_variables(config.pre_model_dir)
for v in var_list:
print(v)
这是:
('actor/main_net/layer1/biases/Variable', [90])
('actor/main_net/layer1/biases/Variable/Adam', [90])
('actor/main_net/layer1/biases/Variable/Adam_1', [90])
('actor/main_net/layer1/weights/Variable', [30, 90])
('actor/main_net/layer1/weights/Variable/Adam', [30, 90])
('actor/main_net/layer1/weights/Variable/Adam_1', [30, 90])
('actor/main_net/layer2/biases/Variable', [60])
('actor/main_net/layer2/biases/Variable/Adam', [60])
('actor/main_net/layer2/biases/Variable/Adam_1', [60])
('actor/main_net/layer2/weights/Variable', [90, 60])
('actor/main_net/layer2/weights/Variable/Adam', [90, 60])
('actor/main_net/layer2/weights/Variable/Adam_1', [90, 60])
('actor/main_net/layer3/biases/Variable', [30])
('actor/main_net/layer3/biases/Variable/Adam', [30])
('actor/main_net/layer3/biases/Variable/Adam_1', [30])
('actor/main_net/layer3/weights/Variable', [60, 30])
('actor/main_net/layer3/weights/Variable/Adam', [60, 30])
('actor/main_net/layer3/weights/Variable/Adam_1', [60, 30])
('actor/main_net/layer4/biases/Variable', [10])
('actor/main_net/layer4/biases/Variable/Adam', [10])
('actor/main_net/layer4/biases/Variable/Adam_1', [10])
('actor/main_net/layer4/weights/Variable', [30, 10])
('actor/main_net/layer4/weights/Variable/Adam', [30, 10])
('actor/main_net/layer4/weights/Variable/Adam_1', [30, 10])
('actor/target_net/layer1/biases/Variable', [90])
('actor/target_net/layer1/weights/Variable', [30, 90])
('actor/target_net/layer2/biases/Variable', [60])
('actor/target_net/layer2/weights/Variable', [90, 60])
('actor/target_net/layer3/biases/Variable', [30])
('actor/target_net/layer3/weights/Variable', [60, 30])
('actor/target_net/layer4/biases/Variable', [10])
('actor/target_net/layer4/weights/Variable', [30, 10])
('beta1_power', [])
('beta1_power_1', [])
('beta2_power', [])
('beta2_power_1', [])
('critic/main_net/l1/biases', [90])
('critic/main_net/l1/biases/Adam', [90])
('critic/main_net/l1/biases/Adam_1', [90])
('critic/main_net/l1/weights', [40, 90])
('critic/main_net/l1/weights/Adam', [40, 90])
('critic/main_net/l1/weights/Adam_1', [40, 90])
('critic/main_net/l2/biases', [60])
('critic/main_net/l2/biases/Adam', [60])
('critic/main_net/l2/biases/Adam_1', [60])
('critic/main_net/l2/weights', [90, 60])
('critic/main_net/l2/weights/Adam', [90, 60])
('critic/main_net/l2/weights/Adam_1', [90, 60])
('critic/main_net/l3/biases', [30])
('critic/main_net/l3/biases/Adam', [30])
('critic/main_net/l3/biases/Adam_1', [30])
('critic/main_net/l3/weights', [60, 30])
('critic/main_net/l3/weights/Adam', [60, 30])
('critic/main_net/l3/weights/Adam_1', [60, 30])
('critic/main_net/l4/bias', [1])
('critic/main_net/l4/bias/Adam', [1])
('critic/main_net/l4/bias/Adam_1', [1])
('critic/main_net/l4/kernel', [30, 1])
('critic/main_net/l4/kernel/Adam', [30, 1])
('critic/main_net/l4/kernel/Adam_1', [30, 1])
('critic/target_net/l1/biases', [90])
('critic/target_net/l1/weights', [40, 90])
('critic/target_net/l2/biases', [60])
('critic/target_net/l2/weights', [90, 60])
('critic/target_net/l3/biases', [30])
('critic/target_net/l3/weights', [60, 30])
('critic/target_net/l4/bias', [1])
('critic/target_net/l4/kernel', [30, 1])
用什么tf.global_variables()
在我当前的模型结果中,它们都很相似:
<tf.Variable 'actor/main_net/layer1/weights/Variable:0' shape=(30, 90) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer1/biases/Variable:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/weights/Variable:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/biases/Variable:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/weights/Variable:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/biases/Variable:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/weights/Variable:0' shape=(30, 10) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/biases/Variable:0' shape=(10,) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer1/weights/Variable:0' shape=(30, 90) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer1/biases/Variable:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer2/weights/Variable:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer2/biases/Variable:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer3/weights/Variable:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer3/biases/Variable:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer4/weights/Variable:0' shape=(30, 10) dtype=float32_ref>,
<tf.Variable 'actor/target_net/layer4/biases/Variable:0' shape=(10,) dtype=float32_ref>,
<tf.Variable 'Variable:0' shape=() dtype=int32_ref>,
<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer1/weights/Variable/Adam:0' shape=(30, 90) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer1/weights/Variable/Adam_1:0' shape=(30, 90) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer1/biases/Variable/Adam:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer1/biases/Variable/Adam_1:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/weights/Variable/Adam:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/weights/Variable/Adam_1:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/biases/Variable/Adam:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer2/biases/Variable/Adam_1:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/weights/Variable/Adam:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/weights/Variable/Adam_1:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/biases/Variable/Adam:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer3/biases/Variable/Adam_1:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/weights/Variable/Adam:0' shape=(30, 10) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/weights/Variable/Adam_1:0' shape=(30, 10) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/biases/Variable/Adam:0' shape=(10,) dtype=float32_ref>,
<tf.Variable 'actor/main_net/layer4/biases/Variable/Adam_1:0' shape=(10,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/weights:0' shape=(40, 90) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/biases:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/weights:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/biases:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/weights:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/biases:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/kernel:0' shape=(30, 1) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/bias:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l1/weights:0' shape=(40, 90) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l1/biases:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l2/weights:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l2/biases:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l3/weights:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l3/biases:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l4/kernel:0' shape=(30, 1) dtype=float32_ref>,
<tf.Variable 'critic/target_net/l4/bias:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'beta1_power_1:0' shape=() dtype=float32_ref>,
<tf.Variable 'beta2_power_1:0' shape=() dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/weights/Adam:0' shape=(40, 90) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/weights/Adam_1:0' shape=(40, 90) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/biases/Adam:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l1/biases/Adam_1:0' shape=(90,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/weights/Adam:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/weights/Adam_1:0' shape=(90, 60) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/biases/Adam:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l2/biases/Adam_1:0' shape=(60,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/weights/Adam:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/weights/Adam_1:0' shape=(60, 30) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/biases/Adam:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l3/biases/Adam_1:0' shape=(30,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/kernel/Adam:0' shape=(30, 1) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/kernel/Adam_1:0' shape=(30, 1) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/bias/Adam:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'critic/main_net/l4/bias/Adam_1:0' shape=(1,) dtype=float32_ref>
这两个列表的唯一区别是 <tf.Variable 'Variable:0' shape=() dtype=int32_ref>
,我不知道这是做什么用的以及它是如何生成的。但是,我不认为这是否是问题,因为我的任何可以恢复的模型也有它。
感谢您为解决此错误提供的任何帮助和评论。
最佳答案
我通过使用排除该单个变量解决了问题:
variables = slim.get_variables_to_restore()
variables_to_restore = [v for v in variables if 'global_step_counter' not in v.name.split('/')[0]]
saver = tf.train.Saver(variables_to_restore)
关于python - NotFoundError(请参阅上面的回溯): Key Variable not found in checkpoint,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52376692/
查看“mysqldump -d”并看到一个键是 KEY,而不是“PRIMARY KEY”或“FOREIGN KEY” 什么是关键? 示例: CREATE TABLE IF NOT EXISTS `TA
在我开始使用 Python 的过程中尝试找出最佳编码实践。我用 Pandas 写了一个 csv 到数据框阅读器。它使用格式: dataframe = read_csv(csv_input, useco
在 Flutter 中,用一个例子可以清楚地解释什么? 我的困惑是关于 key,如下面的代码所示。 MyHomepage({Key key, this.title}) : super(key: key
我在我的 Android 应用程序中使用 GCM。要使用 GCM 服务,我们需要创建 Google API key 。因此,我为 android、服务器和浏览器 key 创建了 API key 。似乎
我想在 azure key 保管库中创建一个 secret ,该 key 将具有多个 key (例如 JSON)。 例如- { "storageAccountKey":"XXXXX", "Co
尝试通过带有 encodeforURL() 的 url 发送 key 时,我不断收到错误消息和 decodefromUrl() .代码示例如下。 这是我的入口页面: key = generateSec
是否有检查雪花变体字段中是否存在键的函数? 最佳答案 您可以使用 IS_NULL_VALUE 来查看 key 是否存在。如果键不存在,则结果将为 NULL。如果键存在,如果值为 JSON null,则
我正在尝试运行此命令: sudo apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A 但我收到一个错误: Execu
我有一个 csv 文件,我正在尝试对 row[3] 进行计数,然后将其与 row[0] 连接 row[0] row[3] 'A01' 'a' 'B02'
如何编写具有这种形式的函数: A(key, B(key, C(key, ValFactory(key)))) 其中 A、B 和 C 具有此签名: TResult GetOrAdd(string key
审查 this method我很好奇为什么它使用 Object.keys(this).map(key => (this as any)[key])? 只调用 Object.keys(this).ind
我有一个奇怪的情况。我有一个字典,self.containing_dict。使用调试器,我看到了字典的内容,并且可以看到 self 是其中的一个键。但是看看这个: >>> self in self.c
我需要在我的 Google Apps 脚本中使用 RSA-SHA256 和公钥签署消息。 我正在尝试使用 Utilities.computeRsaSha256Signature(value, key)
我是 React 的初学者开发人员,几天前我看到了一些我不理解的有趣语法。 View组件上有{...{key}},我会写成 key={key} ,它完全一样吗?你有链接或解释吗? render()
代理 key 、合成 key 和人工 key 之间有什么区别吗? 我不清楚确切的区别。 最佳答案 代理键、合成键和人工键是同义词。技术关键是另一个。它们都表示“没有商业意义的主键”。它们不同于具有超出
问题陈述:在 Web/控制台 C# 应用程序中以编程方式检索并使用存储在 Azure Key Vault 中的敏感值(例如数据库连接字符串)。 据我所知,您可以在 AAD 中注册应用,并使用其客户端
问题陈述:在 Web/控制台 C# 应用程序中以编程方式检索并使用存储在 Azure Key Vault 中的敏感值(例如数据库连接字符串)。 据我所知,您可以在 AAD 中注册应用,并使用其客户端
我正在寻找 Perl 警告的解决方案 “引用键是实验性的” 我从这样的代码中得到这个: foreach my $f (keys($normal{$nuc}{$e})) {#x, y, and z 我在
我正在为 HSM 实现 JCE 提供程序 JCE中有没有机制指定 key 生成类型例如: session key 或永久 key KeyGenerator keygen = KeyGener
我在 Facebook 上创建了一个应用程序。我已经正确添加了 keyhash 并且应用程序运行良好但是当我今天来并尝试再次运行它时它给了我这个错误。 这已经是第二次了。 Previsouly 当我收
我是一名优秀的程序员,十分优秀!