gpt4 book ai didi

java - Spark java 问题创建具有 java.util.Map 类型的行

转载 作者:行者123 更新时间:2023-12-01 08:54:35 25 4
gpt4 key购买 nike

使用 Spark 2.1
我在里面创建了一个带有 MapDataType 的数据集

StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("words", DataTypes.StringType, false, Metadata.empty()),
new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("features", DataTypes.createMapType(DataTypes.StringType, DataTypes.IntegerType), false, Metadata.empty())
});

Map<String,Integer> abc = new HashMap<String,Integer>();
abc.put("abc", 1);
Row r = RowFactory.create(0, "Hi these are words ", 1, abc);
List<Row> data = Arrays.asList(r);
Dataset<Row> wordDataFrame = spark.createDataFrame(data, schema);
wordDataFrame.show();
上面的代码工作正常。
但是,当我尝试在此 DataSet 上调用映射函数(用新的 HashMap 替换 Map DataType 条目)时,出现以下错误。
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("words", DataTypes.StringType, false, Metadata.empty()),
new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("featuresNew", DataTypes.createMapType(DataTypes.StringType, DataTypes.IntegerType), false, Metadata.empty())
});


ExpressionEncoder<Row> encoder = RowEncoder.apply(schema);

Dataset<Row> output = input.map(new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
Map<String, Integer> newMap = new HashMap<String, Integer>();
newMap.put("Transformed string", 1);
return RowFactory.create(row.getInt(0), row.getString(1), row.getInt(2), newMap);
}
}, encoder);

return output;
错误堆栈:
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.lang.RuntimeException: java.util.HashMap is not a valid external type for schema of map<string,int>
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:410)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
我在这里缺少什么?为什么我会收到“ java.util.HashMap 不是 map 架构的有效外部类型”错误
编辑:
我试过 java.util.List 数据类型
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("words", DataTypes.StringType, false, Metadata.empty()),
new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("featuresNew", DataTypes.createArrayType(DataTypes.StringType), false, Metadata.empty())
});

ExpressionEncoder<Row> encoder = RowEncoder.apply(schema);
Dataset<Row> output = input.map(new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
List<String> xyz = Arrays.asList("Hi", "how", "now");

return RowFactory.create(row.getInt(0), row.getString(1), row.getInt(2), xyz);
}
}, encoder);
我收到类似的错误消息
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.lang.RuntimeException: java.util.Arrays$ArrayList is not a valid external type for schema of array<string>
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:221)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
java.lang.String 工作正常
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("words", DataTypes.StringType, false, Metadata.empty()),
new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("featuresNew", DataTypes.StringType, false, Metadata.empty())
});


ExpressionEncoder<Row> encoder = RowEncoder.apply(schema);
Dataset<Row> output = input.map(new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
String xyz = Arrays.asList("Please", "work", "now").toString();
return RowFactory.create(row.getInt(0), row.getString(1), row.getInt(2), xyz);
}
}, encoder);
看起来原始数据类型工作正常!

最佳答案

如果你看 row.getMap(3) .它回来了 scala.collection.Map

scala.collection.Map<Object, Object> map = row.getMap(3);
所以,看来你需要使用 scala.collection.JavaConverters
JavaConverters.mapAsScalaMapConverter(newMap).asScala();

关于java - Spark java 问题创建具有 java.util.Map 类型的行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44123647/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com