- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在 Scikit-learn(Python 3 上的 0.20)中探索 PCA,使用 Pandas 来构建我的数据。当我应用测试/训练分割(并且仅当)时,我的输入标签似乎不再与 PCA 输出匹配。
import pandas
import sklearn.datasets
from matplotlib import pyplot
import seaborn
def load_bc_as_dataframe():
data = sklearn.datasets.load_breast_cancer()
df = pandas.DataFrame(data.data, columns=data.feature_names)
df['diagnosis'] = pandas.Series(data.target_names[data.target])
return data.feature_names.tolist(), df
feature_names, bc_data = load_bc_as_dataframe()
from sklearn.model_selection import train_test_split
# bc_train, _ = train_test_split(bc_data, test_size=0)
bc_train = bc_data
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
bc_pca_raw = pca.fit_transform(bc_train[feature_names])
bc_pca = pandas.DataFrame(bc_pca_raw, columns=('PCA 1', 'PCA 2'))
bc_pca['diagnosis'] = bc_train['diagnosis']
seaborn.scatterplot(
data=bc_pca,
x='PCA 1',
y='PCA 2',
hue='diagnosis',
style='diagnosis'
)
pyplot.show()
这看起来很合理,并且准确的分类结果也证明了这一点。如果我将 bc_train = bc_data
替换为 train_test_split()
调用(即使使用 test_size=0
),我的标签似乎不再对应于原来的。
我意识到 train_test_split()
正在对我的数据进行洗牌(一般来说,我希望如此),但我不明白为什么这会成为问题,因为 PCA 和标签分配使用相同的打乱数据。 PCA的变换只是一个投影,虽然它显然没有保留相同的特征(列),但它不应该改变哪个标签与哪个帧对应。
如何正确地重新标记我的 PCA 输出?
最佳答案
该问题分为三个部分:
train_test_split()
中的改组导致 bc_train
中的索引采用随机顺序(与行位置相比)。DataFrame
重新创建顺序索引(与行位置相比)。bc_train
中有随机索引和 bc_pca
中的连续索引。当我这样做时bc_pca['diagnosis'] = bc_train['diagnosis']
, bc_train
是 reindexed与 bc_pca
s 指数。这会重新排序 bc_train
数据,使其索引匹配 bc_pca
换句话说,当我使用 bc_pca['diagnosis']
进行分配时,Pandas 对索引进行左连接(即 __setitem__()
),而不是逐行复制(类似于 update()
。
我觉得这不太直观,而且我找不到 __setitem__()
的文档的行为超出了源代码,但我希望它对于更有经验的 Pandas 用户来说是有意义的,也许它在我没有见过的更高级别上有记录。
有多种方法可以避免这种情况。我可以重置训练/测试数据的索引:
bc_train, _ = train_test_split(bc_data, test_size=0)
bc_train.reset_index(inplace=True)
或者,我可以从 values
进行分配成员(member):
bc_pca['diagnosis'] = bc_train['diagnosis'].values
在构建 DataFrame 之前我也可以做类似的事情(可以说更明智,因为 PCA 有效地在 bc_train[feature_names].values
上运行)。
关于python - 为什么 sklearn 训练/测试分割加上 PCA 会使我的标签不正确?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53093983/
我尝试用 PCA 构建一个定向边界框。在图片中您可以看到我的结果: 红点:点云 蓝色向量:PCA 分量 我尝试将点投影到向量上,以获得最小值、最大值和平均值。 但是我现在如何定义我的盒子呢?有什么想法
我们如何将 PCA 应用于一维数组? double[][] data = new double [1][600]; PCA pca = new PCA(data, 20); data = pca.ge
我知道PCA和ICA都用于降维,并且在PCA中主成分是正交的(不一定独立),但在ICA中它们是独立的。有人能澄清一下什么时候使用 ICA 而不是 PCA 更好吗? 最佳答案 ICA 不是一种降维技术。
我正在使用 scikit-learning 做一些降维任务。 我的训练/测试数据采用 libsvm 格式。它是一个有 50 万列的大型稀疏矩阵。 我使用 load_svmlight_file 函数加载
我一直在尝试使用 PCA 进行降维。我目前有一个大小为 (100, 100) 的图像,我正在使用一个由 140 个 Gabor 滤波器组成的滤波器组,其中每个滤波器都会给我一个响应,这又是一个 (10
我使用以下简单代码在具有 10 个特征的数据框上运行 PCA: pca = PCA() fit = pca.fit(dfPca) pca.explained_variance_ratio_ 的结果显示
我正在使用 scikit-learn PCA查找具有大约 20000 个特征和 400 多个样本的数据集的主要成分。 但是,与Orange3 PCA相比应该使用 scikit-learn PCA,我得
Sklearn PCA 是 pca.components_ 的 loadings?我很确定是这样,但我正在尝试遵循一篇研究论文,但我从他们的加载中得到了不同的结果。我在 sklearn 文档中找不到它
我有一个包含 50 多个变量的数据框 data,我正在尝试使用 caret 包在 R 中执行 PCA。 library(caret) library(e1071) trans <- preProces
我正在使用 PCA 来降低 N 维数据集的维数,但我想增强对大异常值的稳健性,因此我一直在研究 Robust PCA 代码。 对于传统的 PCA,我使用的是 python 的 sklearn.deco
我正在降低 Spark DataFrame 的维度与 PCA带有 pyspark 的模型(使用 spark ml 库)如下: pca = PCA(k=3, inputCol="features", o
我在 matlab 和 python 中生成相同的矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13
概述 主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和特征提取技术,用于将高维数据转换为低维的特征空间。其目标是通过线性变换将原始特征转化为
目录 计算过程 投影分量计算 假设你有一家理发店,已经记录了过去一年中所有顾客的头发长度和发型偏好的数据。现在你想从这些数据中提取一些主要的信息,比如顾客最常
我正在考虑使用 PCA(TruncatedSVD) 来减少我的稀疏矩阵的维数。 我将我的数据拆分为训练和测试拆分。 X_train , X_test, y_train, y_test = train_
我有来自四个群体、四个处理和三个重复的个体数据集。每个个体仅在一个群体、处理和重复组合中。我对每个人进行了四次测量。我想对每个种群、底物和重复组合的这些测量进行 PCA。 我知道如何对所有个体进行 P
在考虑均值时,数字 1 和 2 背后的直觉是什么?这将如何影响性能和准确性? 1号: pca = decomposition.PCA(n_components=4) X_centere
我正在使用来自 here 的输入数据(见第 3.1 节)。 我正在尝试使用 scikit-learn 重现它们的协方差矩阵、特征值和特征向量。但是,我无法重现数据源中显示的结果。我也在别处看到过这个输
我要做的事情如下:我有一套 Vektors v1-vn对于这些,我需要协方差矩阵(我在做 pca 时得到的)。我还需要协方差矩阵的特征值和特征向量。我按降序对特征值进行排序,然后根据相应的特征值对特征
给定 http://docs.opencv.org/modules/core/doc/operations_on_arrays.html PCA 应该可以通过传递一个矩阵来初始化。 cv::Mat m
我是一名优秀的程序员,十分优秀!