- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他?
最佳答案
简短的回答是都不是。本质上,GloVe 的 Word2Vec 等嵌入层只是一个小的神经网络模块(通常是全连接层),它将更高、稀疏的维度投影到更低、n维向量。
当您将 Keras 中的一个新鲜随机嵌入层插入到您的神经网络中时,Keras 将构建一个形状为 [input_dim, output_dim]
的密集可学习矩阵。
具体来说,假设您要插入一个嵌入层以将 整数标量 月份信息(12 个唯一值)编码为大小为 3 的 浮点向量。在 Keras 中,您将按如下方式声明您的嵌入:
import numpy as np
import keras
from keras.models import Sequential, Model
from keras.layers import Embedding, Input
x = Input(shape=(1000,)) # suppose seq_len=1000
embedding = Embedding(12+1, 3, input_length=1000)(x)
model = Model(inputs=x, outputs= embedding) # Functional API
model.summary()
您的嵌入层将有如下摘要:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 1000) 0
_________________________________________________________________
embedding_1 (Embedding) (None, 1000, 3) 39
=================================================================
Total params: 39
Trainable params: 39
Non-trainable params: 0
_________________________________________________________________
请注意,可学习的参数是 39 = 13*3
(Keras 需要 +1 来编码不属于 12 个唯一月份中的任何一个的值 - 就在案例)。
还要注意,虽然嵌入的输入形状为 (None, 1000)
,但嵌入的输出形状为 (None, 1000, 3)
。这意味着大小为 [13, 3]
的非常小的密集权重矩阵应用于 1000 个输入时间步长中的每个。这意味着,0-11
的每个月整数输入将被转换为大小为 (3,)
的浮点向量。
这也意味着当你从最后一层反向传播到嵌入层时,1000 个时间步嵌入输出中每个的梯度也将流动(在 time_distributed
方式)到大小为 [13,3]
的小型神经网络权重(本质上,嵌入层)。
嵌入层请引用 Keras 官方文档:https://keras.io/layers/embeddings/ .
关于keras - 嵌入 Keras,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51579761/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!