gpt4 book ai didi

python - 为神秘主义者提供不平等/约束的向量

转载 作者:行者123 更新时间:2023-12-01 08:46:44 25 4
gpt4 key购买 nike

我正在尝试为函数最小化提供约束,迄今为止我已经使用通过 scipy 提供的无约束算法成功执行了该函数最小化(scipy.optimize.fmin_l_bfgs_b())。

阅读(例如 Python constrained non-linear optimization ),我发现了一个名为 mystic 的最小化包,这似乎正是我所需要的。我的情况如下。我有一个 3N 变量的函数(表示 N 节点的 xyz 位置坐标),并且我想提供一个约束列表,使得 z/x = const . 对于每个节点。这总共有 N 个约束。如何为 mystic() 最有效地定义/提供这些约束?相同的约束对象也可以与 scipy.optimize.slsqp() 一起使用吗?由于我的约束是线性的,这也应该是一个可行的选择。

我尝试了以下操作,但它使我的计算机崩溃了:

import mystic.symbolic as ms
ieqns = ''
for p in range(N):
ieqns += 'x'+str(p+2) +'/x'+str(p) +" <= 2"

cf = ms.generate_constraint(ms.generate_solvers(ms.simplify(ieqns)))
pf = ms.generate_penalty(ms.generate_conditions(ieqns), k=1e12)

最佳答案

我是mystic作者。我相信您想做的是这样的:

>>> import mystic.symbolic as ms
>>> ieqns = ''
>>> for p in range(10):
... ieqns += 'x{0} <= 2*x{1}\n'.format(p+2,p)
...
>>> cf = ms.generate_constraint(ms.generate_solvers(ieqns))
>>>
>>> # test that it applies the constraints
>>> cf([1.,3.,5.,7.,9.,11.,13.,15.,17.,19.,21.,23.,25.])
[1.0, 3.0, 2.0, 6.0, 4.0, 11.0, 8.0, 15.0, 16.0, 19.0, 21.0, 23.0, 25.0]

然后我们可以在应用约束的同时进行最小化(但是,在下面的情况下,约束基本上是不相关的):

>>> # get an objective
>>> import mystic.models as mm
>>> rosen = mm.dejong.Rosenbrock(12).function
>>>
>>> # get an optimizer
>>> import mystic.solvers as my
>>> result = my.diffev2(rosen, x0=bounds, bounds=bounds, constrints=cf, npop=40, disp=False, full_output=True, gtol=100)
>>>
>>> # get the solution
>>> result[0]
array([0.99997179, 1.00005506, 1.00012367, 0.99998539, 0.99984306,
0.99981495, 0.999951 , 0.99996505, 0.99971107, 0.99925239,
0.99846259, 0.99692293])
>>> # and the final 'cost'
>>> result[1]
2.2385442425350018e-05
>>>

关于python - 为神秘主义者提供不平等/约束的向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53273909/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com