gpt4 book ai didi

python - 在 Tensorflow 中实现 Keras 模型时出现的问题

转载 作者:行者123 更新时间:2023-12-01 08:45:34 24 4
gpt4 key购买 nike

我刚刚开始使用 Tensorflow

我尝试实现一个模型来对 MNSIT 数据集中的数字进行分类。

我熟悉 Keras,因此我首先使用它来创建模型。

Keras 代码:

from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
from os import path

import numpy as np

network = Sequential()
network.add(Dense(700, input_dim=784, activation='tanh'))
network.add(Dense(500, activation='tanh'))
network.add(Dense(500, activation='tanh'))
network.add(Dense(500, activation='tanh'))
network.add(Dense(10, activation='softmax'))

network.compile(loss='categorical_crossentropy', optimizer='adam')

(x_train, y_temp), (x_test, y_test) = mnist.load_data()
y_train = vectorize(y_temp) # I defined this function to create vectors of the labels. It works without issues.

x_train = x_train.reshape(x_train.shape[0], x_train.shape[1]*x_train.shape[2])

network.fit(x_train, y_train, batch_size=100, epochs=3)

x_test = x_test.reshape(x_test.shape[0], x_test.shape[1]*x_test.shape[2])


scores = network.predict(x_test)

correct_pred = 0
for i in range(len(scores)):
if np.argmax(scores[i]) == y_test[i]:
correct_pred += 1

print((correct_pred/len(scores))*100)

上面的代码的准确率约为 92%。

我尝试在 Tensorflow 中实现相同的模型:

import sys

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

data = input_data.read_data_sets('.', one_hot=True)

sess = tf.InteractiveSession()

x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])

w = tf.Variable(tf.zeros([784, 700]))
w2 = tf.Variable(tf.zeros([700, 500]))
w3 = tf.Variable(tf.zeros([500, 500]))
w4 = tf.Variable(tf.zeros([500, 500]))
w5 = tf.Variable(tf.zeros([500, 10]))

h1 = tf.nn.tanh(tf.matmul(x, w))
h2 = tf.nn.tanh(tf.matmul(h1, w2))
h3 = tf.nn.tanh(tf.matmul(h2, w3))
h4 = tf.nn.tanh(tf.matmul(h3, w4))
h = tf.matmul(h4, w5)

loss = tf.math.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=h, labels=y))
gradient_descent = tf.train.AdamOptimizer().minimize(loss)

correct_mask = tf.equal(tf.argmax(h, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_mask, tf.float32))

sess.run(tf.global_variables_initializer())

for i in range(3):
batch_x, batch_y = data.train.next_batch(100)
loss_print = tf.print(loss, output_stream=sys.stdout)
sess.run([gradient_descent, loss_print], feed_dict={x: batch_x, y: batch_y})

ans = sess.run(accuracy, feed_dict={x: data.test.images, y: data.test.labels})

print(ans)

但是,这段代码的准确率仅为 11% 左右。我尝试将纪元数增加到 1000,但结果没有改变。此外,每个时期的损失都是相同的(2.30)。

我在 Tensorflow 代码中遗漏了什么吗?

最佳答案

事实证明,问题是我将权重初始化为零!

简单的改变

w = tf.Variable(tf.zeros([784, 700]))
w2 = tf.Variable(tf.zeros([700, 500]))
w3 = tf.Variable(tf.zeros([500, 500]))
w4 = tf.Variable(tf.zeros([500, 500]))
w5 = tf.Variable(tf.zeros([500, 10]))

w = tf.Variable(tf.random_normal([784, 700], seed=42))
w2 = tf.Variable(tf.random_normal([700, 500], seed=42))
w3 = tf.Variable(tf.random_normal([500, 500], seed=42))
w4 = tf.Variable(tf.random_normal([500, 500], seed=42))
w5 = tf.Variable(tf.random_normal([500, 10], seed=42))

显着改进。

关于python - 在 Tensorflow 中实现 Keras 模型时出现的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53324596/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com