- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面的数据集应该复制旅游公司的时间表数据集(例如通过火车、公共(public)汽车或飞机等的路线)
df = pd.DataFrame({'operator': ['op_a', 'op_a', 'op_a', 'op_a', 'op_b', 'op_b', 'op_b', 'op_b', 'op_c', 'op_c', 'op_c', 'op_c', 'op_d', 'op_d'],
'from': ['a', 'a', 'a', 'a', 'c', 'c', 'c', 'c', 'a', 'a', 'a', 'a', 'x', 'x'],
'to': ['b', 'b', 'b', 'b', 'd', 'd', 'd', 'd', 'b', 'b', 'b', 'b', 'y', 'y'],
'valid_from': ['13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '15/02/2019', '15/02/2019', '15/02/2019', '15/02/2019', '20/05/2019', '21/05/2019'],
'valid_to': ['20/11/2018', '20/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '21/11/2018', '21/11/2018', '21/02/2019', '21/02/2019', '20/02/2019', '20/02/2019', '30/05/2019', '29/05/2019'],
'day_of_week': ['0101010', '0100010', '0111100', '1101100', '0101010', '0100010', '0111100', '1101100', '0001101', '1110000', '0000000', '0000001', '1000000', '1000001']})
print(df)
operator
- 运营公司,例如ABC 航空公司、DEF 火车公司
from
- 出发地,例如伦敦、纽约、纳尼亚
to
- 目的地,例如巴黎
valid_from
- 运营商可以购买路线的日期范围的开始(可以是一周中的任何一天),例如2019-11-01
valid_to
- 运营商可以购买路线的日期范围结束日期(可以是一周中的任何一天),例如2019-11-12
day_of_week
- 表示周日到周六的可用性的二进制文件,例如0101010
表示路线在该日期范围内的周一、周三和周五可用
输出数据集,将日期范围转换为单个日期及其从 day_of_week
字段派生的可用性。主要目标是获得一个干净的数据集,然后将其加载到 Tableau 中,然后构建一个可以轻松显示路线可用性的报告。
dfout = pd.DataFrame({'operator': ['op_a', 'op_a', 'op_a', 'op_a', 'op_a', 'op_a', 'op_a'], 'from': ['a', 'a', 'a', 'a', 'a', 'a', 'a'], 'to': ['b', 'b', 'b', 'b', 'b', 'b', 'b'], 'date': ['13/11/2018', '14/11/2018', '15/11/2018', '16/11/2018', '17/11/2018', '18/11/2018', '19/11/2018'], 'available': [1, 1, 1, 1, 0, 1, 1]})
print(dfout)
因此,这将是日期范围 2018-11-13< 的路线
至 a
到 b
的 op_a
的输出2018-11-19
。
数据集很奇怪。日期范围可能非常随机,但 day_of_week
将始终显示该日期范围内一周中几天的可用性。某些相同的日期范围甚至可能具有不同的 day_of_week
二进制组合,但本质上,如果在任何时候 day_of_week
指示给定日期范围、路线和运营商的可用性,则它将被视为在该日期可用。
使用以下内容寻求帮助:Pandas: decompress date range to individual dates
import pandas as pd
df = pd.DataFrame({'operator': ['op_a', 'op_a', 'op_a', 'op_a', 'op_b', 'op_b', 'op_b', 'op_b', 'op_c', 'op_c', 'op_c', 'op_c', 'op_d', 'op_d'],
'from': ['a', 'a', 'a', 'a', 'c', 'c', 'c', 'c', 'a', 'a', 'a', 'a', 'x', 'x'],
'to': ['b', 'b', 'b', 'b', 'd', 'd', 'd', 'd', 'b', 'b', 'b', 'b', 'y', 'y'],
'valid_from': ['13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '15/02/2019', '15/02/2019', '15/02/2019', '15/02/2019', '20/05/2019', '21/05/2019'],
'valid_to': ['20/11/2018', '20/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '21/11/2018', '21/11/2018', '21/02/2019', '21/02/2019', '20/02/2019', '20/02/2019', '30/05/2019', '29/05/2019'],
'day_of_week': ['0101010', '0100010', '0111100', '1101100', '0101010', '0100010', '0111100', '1101100', '0001101', '1110000', '0000000', '0000001', '1000000', '1000001']})
df.set_index(['operator', 'from','to'], inplace=True)
df['valid_from'] = pd.to_datetime(df['valid_from'])
df['valid_to'] = pd.to_datetime(df['valid_to'])
df['row'] = range(len(df))
starts = df[['valid_from', 'day_of_week', 'row']].rename(columns={'valid_from': 'date'})
ends = df[['valid_to', 'day_of_week', 'row']].rename(columns={'valid_to':'date'})
df_decomp = pd.concat([starts, ends])
df_decomp = df_decomp.set_index('row', append=True)
df_decomp.sort_index()
df_decomp = df_decomp.groupby(level=[0,1,2,3]).apply(lambda x: x.set_index('date').resample('D').fillna(method='pad'))
结果看起来很有希望。我最后的想法是:
weekday
列,返回以 Sunday
开头的 date
的工作日 0
available
列,该列使用 weekday
作为位置索引返回 day_of_week
中的二进制值operator
、from
和to
行,并保持可用
1
并删除那些 0
或如果这些运算符
没有 1
'/from
's/to
's 然后将其保留为 0
...疯狂...对于啰嗦表示歉意,我希望我说得有道理。任何对此的帮助将不胜感激。
编辑:
valid_to
日期)最佳答案
如果你不太关心速度,可以使用 iterrows() 和 df.at[]:
import pandas as pd
df = pd.DataFrame({'operator': ['op_a', 'op_a', 'op_a', 'op_a', 'op_b', 'op_b', 'op_b', 'op_b', 'op_c', 'op_c', 'op_c', 'op_c', 'op_d', 'op_d'], 'from': ['a', 'a', 'a', 'a', 'c', 'c', 'c', 'c', 'a', 'a', 'a', 'a', 'x', 'x'], 'to': ['b', 'b', 'b', 'b', 'd', 'd', 'd', 'd', 'b', 'b', 'b', 'b', 'y', 'y'], 'valid_from': ['13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '13/11/2018', '15/02/2019', '15/02/2019', '15/02/2019', '15/02/2019', '01/05/2019', '01/05/2019'], 'valid_to': ['19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '19/11/2018', '21/02/2019', '21/02/2019', '21/02/2019', '21/02/2019', '10/05/2019', '11/05/2019'], 'day_of_week': ['0101010', '0100010', '0111100', '1101100', '0101010', '0100010', '0111100', '1101100', '0001101', '1110000', '0000000', '0000001', '1000000', '1000001']})
df['valid_from'] = pd.to_datetime(df['valid_from'])
df['valid_to'] = pd.to_datetime(df['valid_to'])
df['day'] = (df['valid_from']+pd.to_timedelta(1, unit='d')).dt.weekday # gives weekdays : ) = Sunday
print df.head()
df_out = pd.DataFrame(columns=['available', 'date', 'from', 'operator', 'to'])
idx = 0
for i, row in df.iterrows():
daterange = row['valid_to'] - row['valid_from']
print daterange.days
daystring = 52 * (row['day_of_week']) # extend string to allow going through multiple weeks
for j in range(daterange.days+1):
df_out.at[idx, ['available', 'date', 'from', 'operator', 'to']] = [ # replaced set_value with df.at[]
int(daystring[j + row['day']]), # use day of the week as starting position
row['valid_from']+pd.to_timedelta(j, unit='d'),
row['from'],
row['operator'],
row['to']
]
# row['day_of_week'][j]
idx += 1
df_out.drop_duplicates(inplace=True) # drop all duplicates
df_0 = df_out[df_out['available']==0]
df_1 = df_out[df_out['available']==1]
df_out = df_0.merge(df_1, how='outer', left_on=['date', 'from', 'operator', 'to'], right_on=['date', 'from', 'operator', 'to'])
df_out.fillna(0, inplace=True)
df_out['available'] = df_out['available_x'] + df_out['available_y']
df_out.drop(['available_x', 'available_y'], axis=1, inplace=True)
df_out.sort_values(by='date',inplace=True)
print df_out
关于python - Pandas - 返回日期范围的单个日期并匹配工作日二进制值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53325057/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!