gpt4 book ai didi

r - 如何使用 dplyr 计算与 rowmean 的比率

转载 作者:行者123 更新时间:2023-12-01 08:42:38 27 4
gpt4 key购买 nike

我有一个数据框,其中包含不同样本中基因的定量值,我想将每个值除以行平均值。后跟所有值的 log2。这可以通过 base R 完成,如下所示,但我无法使用管道使其工作。

示例数据框:

df <- data.frame("Gene_Symbol" = c("Gene1","Gene2","Gene3","Gene4","Gene5","Gene6","Gene7"), 
"Sample1" = c(85657.97656,54417.78906,110949.3281,53197.45313,87156.80469,NA,23880.2832),
"Sample2" = c(10423.40918,41660.73047,40094.54688,49519.78125,129387.1094,NA,23903.25977),
"Sample3" = c(18778.68359,43655.79688,NA,57447.08984,113266.1484,44810.26172,26316.6543),
"Sample4" = c(23919.53125,47829.02344,NA,51478.58203,116275.3359,43110.94922,25417.45508),
"Sample5" = c(NA,46677.20313,63389.45313,48722.15234,NA,77135.52344,40265.6875),
"Sample6" = c(NA,68596.22656,56802.60938,44712.64063,NA,47744.17969,33689.62891),
"Sample7" = c(NA,80506.14844,48722.99219,38629.00781,NA,37885,36638.02344))

想要得到 log2 的比率与 rowmean,如下所示:

  Gene_Symbol      Sample1     Sample2     Sample3     Sample4     Sample5     Sample6    Sample7
1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169

用基数 R 计算 rowMeans

rowMeanValues <- rowMeans(df[,2:ncol(df)], na.rm = TRUE)

将所有量化值除以 rowMeanValues

df[,2:ncol(df)] <- sweep(df[,2:ncol(df)],
MARGIN = 1, FUN = "/",
STATS = rowMeanValues)

比率的 log2

df[,2:ncol(df)] <- log2(df[,2:ncol(df)])

这给了我上面想要的表格。我如何在 dplyr 中进行这些计算?

在下面尝试过,但它是按列平均值而不是行平均值划分的

df %>% mutate_at(vars(starts_with('Sample')), funs(./mean(., na.rm = TRUE)))

感谢帮助!亨里克

最佳答案

一个选项是先计算 rowMeans 并将其创建为列,然后在下一步中执行 mutate_at。在这里,我们使用 base R 中的 rowMeans,因为它比 rowwise 或其他形式或 reshape 计算行方式均值更有效

library(dplyr)
df %>%
mutate(Mean = rowMeans(select(., starts_with('Sample')), na.rm = TRUE)) %>%
mutate_at(vars(starts_with('Sample')), ~ log2(./Mean)) %>%
select(-Mean) # removing the Mean column from the dataset
#Gene_Symbol Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7
#1 Gene1 1.303863983 -1.73489640 -0.88562768 -0.53653450 NA NA NA
#2 Gene2 -0.009130358 -0.39452056 -0.32703546 -0.19532236 -0.23049058 0.32492052 0.5558903
#3 Gene3 0.793942295 -0.67448070 NA NA -0.01364391 -0.17192953 -0.3932840
#4 Gene4 0.115606000 0.01225376 0.22648263 0.06822114 -0.01117331 -0.13506843 -0.3460666
#5 Gene5 -0.355634714 0.21437397 0.02239683 0.06022518 NA NA NA
#6 Gene6 NA NA -0.16205178 -0.21782661 0.62151449 -0.07055606 -0.4042542
#7 Gene7 -0.329904867 -0.32851744 -0.18974873 -0.23990523 0.42382615 0.16657972 0.2876169

此外,mutate_at 中的 . 是实际的列值,因此采用 mean只会按列进行平均而不按行进行

关于r - 如何使用 dplyr 计算与 rowmean 的比率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60104288/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com