- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 JSON,它正在从 http://api.worldweatheronline.com/ 发出请求。通过他们有用的 API。
我正在努力将 JSON 转换为表格格式,例如 pandas 数据框。我认为问题是由于 JSON 的嵌套结构造成的。
我已经尝试过pd.DataFrame(json)
,但是它的格式不正确,因为它与嵌套结构作斗争,因为“天气每小时时间”跨越许多行,而初始行跨越单行。
我还尝试过导出为 JSON 并读入为 pd.read_json
,但这也遇到了类似的问题。
非常感谢您的帮助!
JSON如下:
{'data': {'request': [{'type': 'UK Postcode', 'query': 'E4'}],
'weather': [{'date': '2018-11-28',
'astronomy': [{'sunrise': '07:39 AM',
'sunset': '03:57 PM',
'moonrise': '09:46 PM',
'moonset': '12:21 PM',
'moon_phase': 'Last Quarter',
'moon_illumination': '69'}],
'maxtempC': '13',
'maxtempF': '56',
'mintempC': '10',
'mintempF': '51',
'totalSnow_cm': '0.0',
'sunHour': '3.1',
'uvIndex': '0',
'hourly': [{'time': '0',
'tempC': '9',
'tempF': '48',
'windspeedMiles': '4',
'windspeedKmph': '7',
'winddirDegree': '212',
'winddir16Point': 'SSW',
'weatherCode': '296',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png'}],
'weatherDesc': [{'value': 'Light rain'}],
'precipMM': '1.6',
'humidity': '93',
'visibility': '11',
'pressure': '1010',
'cloudcover': '100',
'HeatIndexC': '9',
'HeatIndexF': '48',
'DewPointC': '8',
'DewPointF': '46',
'WindChillC': '8',
'WindChillF': '46',
'WindGustMiles': '8',
'WindGustKmph': '12',
'FeelsLikeC': '8',
'FeelsLikeF': '46'},
{'time': '300',
'tempC': '9',
'tempF': '48',
'windspeedMiles': '7',
'windspeedKmph': '11',
'winddirDegree': '174',
'winddir16Point': 'S',
'weatherCode': '266',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png'}],
'weatherDesc': [{'value': 'Light drizzle'}],
'precipMM': '0.5',
'humidity': '92',
'visibility': '15',
'pressure': '1009',
'cloudcover': '100',
'HeatIndexC': '9',
'HeatIndexF': '48',
'DewPointC': '8',
'DewPointF': '46',
'WindChillC': '7',
'WindChillF': '45',
'WindGustMiles': '11',
'WindGustKmph': '17',
'FeelsLikeC': '7',
'FeelsLikeF': '45'},
{'time': '600',
'tempC': '11',
'tempF': '51',
'windspeedMiles': '11',
'windspeedKmph': '18',
'winddirDegree': '175',
'winddir16Point': 'S',
'weatherCode': '266',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png'}],
'weatherDesc': [{'value': 'Light drizzle'}],
'precipMM': '0.7',
'humidity': '95',
'visibility': '14',
'pressure': '1008',
'cloudcover': '100',
'HeatIndexC': '11',
'HeatIndexF': '51',
'DewPointC': '10',
'DewPointF': '50',
'WindChillC': '8',
'WindChillF': '47',
'WindGustMiles': '19',
'WindGustKmph': '31',
'FeelsLikeC': '8',
'FeelsLikeF': '47'},
{'time': '900',
'tempC': '12',
'tempF': '54',
'windspeedMiles': '12',
'windspeedKmph': '19',
'winddirDegree': '208',
'winddir16Point': 'SSW',
'weatherCode': '296',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png'}],
'weatherDesc': [{'value': 'Light rain'}],
'precipMM': '0.8',
'humidity': '93',
'visibility': '14',
'pressure': '1008',
'cloudcover': '100',
'HeatIndexC': '12',
'HeatIndexF': '54',
'DewPointC': '11',
'DewPointF': '52',
'WindChillC': '10',
'WindChillF': '51',
'WindGustMiles': '20',
'WindGustKmph': '32',
'FeelsLikeC': '10',
'FeelsLikeF': '51'},
{'time': '1200',
'tempC': '13',
'tempF': '56',
'windspeedMiles': '16',
'windspeedKmph': '26',
'winddirDegree': '209',
'winddir16Point': 'SSW',
'weatherCode': '266',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png'}],
'weatherDesc': [{'value': 'Light drizzle'}],
'precipMM': '0.2',
'humidity': '87',
'visibility': '15',
'pressure': '1008',
'cloudcover': '100',
'HeatIndexC': '13',
'HeatIndexF': '56',
'DewPointC': '11',
'DewPointF': '52',
'WindChillC': '11',
'WindChillF': '52',
'WindGustMiles': '25',
'WindGustKmph': '41',
'FeelsLikeC': '11',
'FeelsLikeF': '52'},
{'time': '1500',
'tempC': '13',
'tempF': '56',
'windspeedMiles': '19',
'windspeedKmph': '31',
'winddirDegree': '205',
'winddir16Point': 'SSW',
'weatherCode': '266',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png'}],
'weatherDesc': [{'value': 'Light drizzle'}],
'precipMM': '0.5',
'humidity': '84',
'visibility': '15',
'pressure': '1007',
'cloudcover': '100',
'HeatIndexC': '13',
'HeatIndexF': '56',
'DewPointC': '11',
'DewPointF': '51',
'WindChillC': '11',
'WindChillF': '52',
'WindGustMiles': '30',
'WindGustKmph': '48',
'FeelsLikeC': '11',
'FeelsLikeF': '52'},
{'time': '1800',
'tempC': '10',
'tempF': '51',
'windspeedMiles': '19',
'windspeedKmph': '31',
'winddirDegree': '216',
'winddir16Point': 'SW',
'weatherCode': '122',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0004_black_low_cloud.png'}],
'weatherDesc': [{'value': 'Overcast'}],
'precipMM': '0.0',
'humidity': '82',
'visibility': '15',
'pressure': '1007',
'cloudcover': '100',
'HeatIndexC': '12',
'HeatIndexF': '54',
'DewPointC': '11',
'DewPointF': '51',
'WindChillC': '10',
'WindChillF': '51',
'WindGustMiles': '30',
'WindGustKmph': '49',
'FeelsLikeC': '10',
'FeelsLikeF': '51'},
{'time': '2100',
'tempC': '6',
'tempF': '44',
'windspeedMiles': '15',
'windspeedKmph': '23',
'winddirDegree': '219',
'winddir16Point': 'SW',
'weatherCode': '353',
'weatherIconUrl': [{'value': 'http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0025_light_rain_showers_night.png'}],
'weatherDesc': [{'value': 'Light rain shower'}],
'precipMM': '0.5',
'humidity': '82',
'visibility': '15',
'pressure': '1008',
'cloudcover': '70',
'HeatIndexC': '8',
'HeatIndexF': '47',
'DewPointC': '10',
'DewPointF': '50',
'WindChillC': '6',
'WindChillF': '44',
'WindGustMiles': '24',
'WindGustKmph': '39',
'FeelsLikeC': '6',
'FeelsLikeF': '44'}]}]}}
我想要的 csv 示例:
"request__type", "request__query", "weather__date", "weather__astronomy__sunrise", "weather__astronomy__sunset", "weather__astronomy__moonrise", "weather__astronomy__moonset", "weather__astronomy__moon_phase", "weather__astronomy__moon_illumination", "weather__maxtempC", "weather__maxtempF", "weather__mintempC", "weather__mintempF", "weather__totalSnow_cm", "weather__sunHour", "weather__uvIndex", "weather__hourly__time", "weather__hourly__tempC", "weather__hourly__tempF", "weather__hourly__windspeedMiles", "weather__hourly__windspeedKmph", "weather__hourly__winddirDegree", "weather__hourly__winddir16Point", "weather__hourly__weatherCode", "weather__hourly__weatherIconUrl__value", "weather__hourly__weatherDesc__value", "weather__hourly__precipMM", "weather__hourly__humidity", "weather__hourly__visibility", "weather__hourly__pressure", "weather__hourly__cloudcover", "weather__hourly__HeatIndexC", "weather__hourly__HeatIndexF", "weather__hourly__DewPointC", "weather__hourly__DewPointF", "weather__hourly__WindChillC", "weather__hourly__WindChillF", "weather__hourly__WindGustMiles", "weather__hourly__WindGustKmph", "weather__hourly__FeelsLikeC", "weather__hourly__FeelsLikeF"
"UK Postcode", "E4", "2018-11-28", "07:39 AM", "03:57 PM", "09:46 PM", "12:21 PM", "Last Quarter", "69", "13", "56", "10", "51", "0.0", "3.1", "0", "0", "9", "48", "4", "7", "212", "SSW", "296", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png", "Light rain", "1.6", "93", "11", "1010", "100", "9", "48", "8", "46", "8", "46", "8", "12", "8", "46"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "300", "9", "48", "7", "11", "174", "S", "266", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png", "Light drizzle", "0.5", "92", "15", "1009", "100", "9", "48", "8", "46", "7", "45", "11", "17", "7", "45"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "600", "11", "51", "11", "18", "175", "S", "266", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0033_cloudy_with_light_rain_night.png", "Light drizzle", "0.7", "95", "14", "1008", "100", "11", "51", "10", "50", "8", "47", "19", "31", "8", "47"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "900", "12", "54", "12", "19", "208", "SSW", "296", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png", "Light rain", "0.8", "93", "14", "1008", "100", "12", "54", "11", "52", "10", "51", "20", "32", "10", "51"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "1200", "13", "56", "16", "26", "209", "SSW", "266", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png", "Light drizzle", "0.2", "87", "15", "1008", "100", "13", "56", "11", "52", "11", "52", "25", "41", "11", "52"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "1500", "13", "56", "19", "31", "205", "SSW", "266", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0017_cloudy_with_light_rain.png", "Light drizzle", "0.5", "84", "15", "1007", "100", "13", "56", "11", "51", "11", "52", "30", "48", "11", "52"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "1800", "10", "51", "19", "31", "216", "SW", "122", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0004_black_low_cloud.png", "Overcast", "0.0", "82", "15", "1007", "100", "12", "54", "11", "51", "10", "51", "30", "49", "10", "51"
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "2100", "6", "44", "15", "23", "219", "SW", "353", "http://cdn.worldweatheronline.net/images/wsymbols01_png_64/wsymbol_0025_light_rain_showers_night.png", "Light rain shower", "0.5", "82", "15", "1008", "70", "8", "47", "10", "50", "6", "44", "24", "39", "6", "44"
最佳答案
我将你的 JSON 保存到一个文件中('test.json',顺便说一句,撇号需要用引号交换,以便 json
模块可以解析它)并使用 json
模块读取它。您希望最终得到一个 pandas DataFrame,我们需要 defaultdicts 来使扁平化变得容易:
import json
import pandas as pd
from collections import defaultdict
由于您将使用一个嵌套结构,该结构在每个新上下文中看起来都会有所不同,因此您首先需要一个函数来展平由多个 dict
和 list 组成的通用嵌套对象
直到你得到一个浅的dict
:我的建议:
def flatten_json(json):
flattened_dict = defaultdict(list)
def flatten(structure):
global key
if type(structure) is dict:
for key in structure:
flatten(structure[key])
elif type(structure) is list:
for item in structure:
flatten(item)
else:
flattened_dict[key].append(structure)
flatten(json)
return flattened_dict
快到了。我们唯一需要解决的问题是,如果所有 dict 值的长度相同,pandas 就只能从字典中构建 Dataframe。因此我们需要一个函数来将较短的值填充到最长的长度:
def fill_up_dict(dicti):
max_length = max([len(liist) for liist in dicti.values()])
for value in dicti.values():
remaining_length = max_length - len(value)
value.extend([""]*remaining_length)
return dicti
完成。只需读取您的 JSON,将其展平、填充并将其转储到 Dataframe 中即可:
with open('test.json', 'r') as f:
json_data = json.load(f)
flat_dict = flatten_json(json_data)
homogeneous_dict = fill_up_dict(flat_dict)
df = pd.DataFrame(homogeneous_dict)
出站 df
看起来如我们所愿:
DewPointC DewPointF FeelsLikeC FeelsLikeF HeatIndexC HeatIndexF WindChillC
0 8 46 8 46 9 48 8
1 8 46 7 45 9 48 7
2 10 50 8 47 11 51 8
3 11 52 10 51 12 54 10
4 11 52 11 52 13 56 11
5 11 51 11 52 13 56 11
6 11 51 10 51 12 54 10
7 10 50 6 44 8 47 6
8
9
10
11
12
13
14
15
WindChillF WindGustKmph WindGustMiles ... totalSnow_cm \
0 46 12 8 ... 0.0
1 45 17 11 ...
2 47 31 19 ...
3 51 32 20 ...
4 52 41 25 ...
5 52 48 30 ...
6 51 49 30 ...
7 44 39 24 ...
8 ...
9 ...
10 ...
11 ...
12 ...
13 ...
14 ...
15 ...
type uvIndex value \
0 UK Postcode 0 http://cdn.worldweatheronline.net/images/wsymb...
1 Light rain
2 http://cdn.worldweatheronline.net/images/wsymb...
3 Light drizzle
4 http://cdn.worldweatheronline.net/images/wsymb...
5 Light drizzle
6 http://cdn.worldweatheronline.net/images/wsymb...
7 Light rain
8 http://cdn.worldweatheronline.net/images/wsymb...
9 Light drizzle
10 http://cdn.worldweatheronline.net/images/wsymb...
11 Light drizzle
12 http://cdn.worldweatheronline.net/images/wsymb...
13 Overcast
14 http://cdn.worldweatheronline.net/images/wsymb...
15 Light rain shower
visibility weatherCode winddir16Point winddirDegree windspeedKmph \
0 11 296 SSW 212 7
1 15 266 S 174 11
2 14 266 S 175 18
3 14 296 SSW 208 19
4 15 266 SSW 209 26
5 15 266 SSW 205 31
6 15 122 SW 216 31
7 15 353 SW 219 23
8
9
10
11
12
13
14
15
windspeedMiles
0 4
1 7
2 11
3 12
4 16
5 19
6 19
7 15
8
9
10
11
12
13
14
15
[16 rows x 40 columns]
祝您的项目顺利!
D.
关于python - JSON 文件的表格格式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53527688/
最近开始学习MongoDB。今天老师教了我们 mongoexport 命令。在练习时,我遇到了一个典型的问题,包括教练在内的其他同学都没有遇到过。我在我的 Windows 10 机器上使用 Mongo
我是 JSON Schema 的新手,读过什么是 JSON Schema 等等。但我不知道如何将 JSON Schema 链接到 JSON 以针对该 JSON Schema 进行验证。谁能解释一下?
在 xml 中,我可以在另一个 xml 文件中包含一个文件并使用它。如果您的软件从 xml 获取配置文件但没有任何方法来分离配置,如 apache/ngnix(nginx.conf - site-av
我有一个 JSON 对象,其中包含一个本身是 JSON 对象的字符串。我如何反序列化它? 我希望能够做类似的事情: #[derive(Deserialize)] struct B { c: S
考虑以下 JSON { "a": "{\"b\": 12, \"c\": \"test\"}" } 我想定义一个泛型读取 Reads[Outer[T]]对于这种序列化的 Json import
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 11 个月前关闭。 Improve
我的旧项目在 MySQL 中有 Standard JSON 格式的数据。 对于我在 JS (Node.js) 和 DynamoDB 中的全新项目,关于 Standard JSON格式: 是否建议将其转
JSON 值字符串、数字、true、false、null 是否是有效的 JSON? 即,是 true 一个有效的 JSON 文档?还是必须是数组/对象? 一些验证器接受这个(例如 http://jso
我有一个 JSON 字符串,其中一个字段是文本字段。这个文本字段可以包含用户在 UI 中输入的文本,如果他们输入的文本是 JSON 文本,也许是为了说明一些编码,我需要对他们的文本进行编码,以便它不会
我正在通过 IBM MQ 调用处理数据,当由 ColdFusion 10 (10,0,11,285437) 序列化时,0 将作为 +0.0 返回,它会导致无效的 JSON并且无法反序列化。 stPol
我正在从三个数组中生成一个散列,然后尝试构建一个 json。我通过 json object has array 成功了。 require 'json' A = [['A1', 'A2', 'A3'],
我从 API 接收 JSON,响应可以是 30 种类型之一。每种类型都有一组唯一的字段,但所有响应都有一个字段 type 说明它是哪种类型。 我的方法是使用serde .我为每种响应类型创建一个结构并
我正在下载一个 JSON 文件,我已将其检查为带有“https://jsonlint.com”的有效 JSON 到文档目录。然后我打开文件并再次检查,结果显示为无效的 JSON。这怎么可能????这是
我正在尝试根据从 API 接收到的数据动态创建一个 JSON 对象。 收到的示例数据:将数据解码到下面给出的 CiItems 结构中 { "class_name": "test", "
我想从字符串转换为对象。 来自 {"key1": "{\n \"key2\": \"value2\",\n \"key3\": {\n \"key4\": \"value4\"\n }\n
目前我正在使用以下代码将嵌套的 json 转换为扁平化的 json: import ( "fmt" "github.com/nytlabs/gojsonexplode" ) func
我有一个使用来自第三方 API 的数据的应用程序。我需要将 json 解码为一个结构,这需要该结构具有“传入”json 字段的 json 标签。传出的 json 字段具有不同的命名约定,因此我需要不同
我想使用 JSON 架构来验证某些值。我有两个对象,称它们为 trackedItems 和 trackedItemGroups。 trackedItemGroups 是组名称和 trackedItem
考虑以下案例类模式, case class Y (a: String, b: String) case class X (dummy: String, b: Y) 字段b是可选的,我的一些数据集没有字
我正在存储 cat ~/path/to/file/blah | 的输出jq tojson 在一个变量中,稍后在带有 JSON 内容的 curl POST 中使用。它运作良好,但它删除了所有换行符。我知
我是一名优秀的程序员,十分优秀!