- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 pandas 的新手,并且陷入了计算中。这是我的样本 DF。我有兴趣获取每组收盘价中最接近的strike_price行。 (按日期、时间、选项类型分组)
name date time open high low close option_type strike_price open_opn high_opn low_opn close_opn
0 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 CE 11800 104.95 109.45 104.50 107.25
1 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 CE 11700 160.00 164.25 159.90 161.60
2 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 CE 11600 223.20 229.10 223.20 226.30
0 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 PE 11800 166.05 166.95 163.55 165.95
1 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 PE 11600 88.80 89.45 86.45 89.00
2 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 PE 11700 122.35 122.65 119.40 122.30
这是我的预期输出。
name date time open high low close option_type strike_price open_opn high_opn low_opn close_opn
1 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11700.15 CE 11700 160.00 164.25 159.90 161.60
2 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11700.15 PE 11700 122.35 122.65 119.40 122.30
如果收盘价为 11760,则预期卖出价为 11760。
0 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 CE 11800 104.95 109.45 104.50 107.25
0 NIFTY 20180903 09:16 11736.05 11736.10 11699.35 11720.15 PE 11800 166.05 166.95 163.55 165.95
请帮我解决这个问题。高度赞赏。
最佳答案
使用sub
与 abs
首先,然后通过sort_values
获得每组的最小值与 drop_duplicates
:
df['diff'] = df['close'].sub(df['strike_price']).abs()
df = df.sort_values('diff').drop_duplicates(['date', 'time', 'option_type'])
print (df)
name date time open high low close option_type \
1 NIFTY 20180903 09:16 11736.05 11736.1 11699.35 11720.15 CE
2 NIFTY 20180903 09:16 11736.05 11736.1 11699.35 11720.15 PE
strike_price open_opn high_opn low_opn close_opn diff
1 11700 160.00 164.25 159.9 161.6 20.15
2 11700 122.35 122.65 119.4 122.3 20.15
另一个解决方案 DataFrameGroupBy.idxmin
与 loc
:
df = df.reset_index(drop=True)
df['diff'] = df['close'].sub(df['strike_price']).abs()
df = df.loc[df.groupby(['date', 'time', 'option_type'])['diff'].idxmin()]
print (df)
name date time open high low close option_type \
1 NIFTY 20180903 09:16 11736.05 11736.1 11699.35 11720.15 CE
5 NIFTY 20180903 09:16 11736.05 11736.1 11699.35 11720.15 PE
strike_price open_opn high_opn low_opn close_opn diff
1 11700 160.00 164.25 159.9 161.6 20.15
5 11700 122.35 122.65 119.4 122.3 20.15
关于python - 分组后,在 pandas python 中找到每个组中最接近的一个,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53680607/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!