gpt4 book ai didi

r - 如何获得矩阵中两列值之间的绝对差

转载 作者:行者123 更新时间:2023-12-01 08:22:52 24 4
gpt4 key购买 nike

我有一个像下面这样的矩阵

      i j value
[1,] 3 6 0.194201129
[2,] 3 5 0.164547043
[3,] 3 4 0.107149279
[4,] 4 3 0.004927017
[5,] 3 1 0.080454448
[6,] 1 2 0.003220612
[7,] 2 6 0.162313646
[8,] 3 3 0.114992628
[9,] 4 1 0.015337253
[10,] 1 6 0.026550051
[11,] 3 2 0.057004116
[12,] 4 2 0.006441224
[13,] 4 5 0.025641026
[14,] 2 4 0.004885993
[15,] 1 1 0.036552785
[16,] 1 5 0.048249186
[17,] 1 4 0.006053565
[18,] 1 3 0.004970296

正如你所看到的 i, j对有一个逆对。例如 i = 3, j = 1 ,有一对 i = 1, j = 3 .

这是我想要实现的目标。

i, j对减去其倒数并获得减法的绝对值。对于那些没有逆对的对,从它们中减去 0。

下面是几个例子:

对于 i = 3, j = 5没有逆对 (i = 5, j = 3),因此计算变为:
abs(0.164547043 - 0)
对于 i = 3, j = 1矩阵上有一对逆矩阵 i = 1, j = 3因此计算将是:
abs(0.004970296 - 0.080454448)
我通过编写一堆充满 for 循环的代码(65 行)来解决这个问题,并且很难阅读和编辑。

所以我想知道是否有另一种更有效的方法来做这样的事情,通过使用更紧凑的函数。

受上一篇文章的启发,它的答案非常简单(通过使用aggregate() 函数)并通过在线搜索这些函数,我试图在这里使用 mapply(),但事实是我无法处理逆对。

编辑:
dput()
memMatrix <- structure(c(3, 3, 3, 4, 3, 1, 2, 3, 4, 1, 3, 4, 4, 2, 1, 1, 1,
1, 6, 5, 4, 3, 1, 2, 6, 3, 1, 6, 2, 2, 5, 4, 1, 5, 4, 3, 0.194201128983738,
0.164547043451226, 0.107149278958536, 0.00492701677834917, 0.0804544476798398,
0.00322061191626409, 0.162313646044361, 0.114992627755601, 0.0153372534398016,
0.0265500506171091, 0.0570041160347523, 0.00644122383252818,
0.0256410256410256, 0.00488599348534202, 0.0365527853282693,
0.0482491856677524, 0.0060535654765406, 0.00497029586494912), .Dim = c(18L,
3L), .Dimnames = list(NULL, c("i", "j", "value")))

这里也是到目前为止有效的代码,但它要复杂得多

哪里 memMatrix是帖子顶部给出的矩阵。在这里你可以看到一些不同之处,我将绝对值与一个名为 probability_distribution 的变量相乘。 ,但这并不重要。我从最初的帖子中删除了(乘法)以使其更简单。
subFunc <- function( memMatrix , probability_distribution )
{

# Node specific edge relevance matrix
node_edgeRelm <- matrix(ncol = 3)
colnames(node_edgeRelm) <- c("i","j","rel")
node_edgeRelm <- na.omit(node_edgeRelm)

for ( row in 1:nrow( memMatrix ) )
{
pair_i <- memMatrix[row,"i"]
pair_j <- memMatrix[row,"j"]

# If already this pair of i and j has been calculated continue with the next pair
# At the end of a new calculation, we store the i,j (verse) values in order from lower to higher
# and then we check here for the inverse j,i values (if exists).
if( pair_i < pair_j )
if( any(node_edgeRelm[,"i"] == pair_i & node_edgeRelm[,"j"] == pair_j) ) next
if( pair_j < pair_i )
if( any(node_edgeRelm[,"i"] == pair_j & node_edgeRelm[,"j"] == pair_i) ) next

# Verse i,j
mepm_ij <- as.numeric( memMatrix[which( memMatrix[,"i"] == pair_i & memMatrix[,"j"] == pair_j ), "mep"] )
if( length(mepm_ij) == 0 )
mepm_ij <- 0
# Inverse j,i
mepm_ji <- as.numeric( memMatrix[which( memMatrix[,"i"] == pair_j & memMatrix[,"j"] == pair_i ), "mep"] )
if( length(mepm_ji) == 0 )
mepm_ji <- 0

# Calculate the edge relevance for that specific initial node x and pair i,j
edge_relevance <- probability_distribution * abs( mepm_ij - mepm_ji )

# Store that specific edge relevance with an order from lower to higher node
if ( pair_i < pair_j)
node_edgeRelm <- rbind( node_edgeRelm, c( as.numeric(pair_i), as.numeric(pair_j), as.numeric(edge_relevance) ) )
else
node_edgeRelm <- rbind( node_edgeRelm, c( as.numeric(pair_j), as.numeric(pair_i), as.numeric(edge_relevance) ) )
}

na.omit(node_edgeRelm)
}

您可以将其作为 subFunc(memMatrix, 1/3) 运行

最佳答案

假设输入是矩阵mvalue由具有相同 i, j 或 j, i 的元素组成。将有 1 或 2 value每个这样的组中的元素,因此对于任何特定组,将零附加到该 1 或 2 长度向量并取前 2 个元素,对结果 2 元素向量的元素进行差分并取绝对值。此过程不会更改行顺序。它提供了一个数据框,但如果需要使用 as.matrix 可以将其转换回矩阵.不使用任何包。

absdiff <- function(x) abs(diff(c(x, 0)[1:2]))
transform(m, value = ave(value, pmin(i, j), pmax(i, j), FUN = absdiff))

给予:
   i j       value
1 3 6 0.194201129
2 3 5 0.164547043
3 3 4 0.102222262
4 4 3 0.102222262
5 3 1 0.075484152
6 1 2 0.003220612
7 2 6 0.162313646
8 3 3 0.114992628
9 4 1 0.009283688
10 1 6 0.026550051
11 3 2 0.057004116
12 4 2 0.001555230
13 4 5 0.025641026
14 2 4 0.001555230
15 1 1 0.036552785
16 1 5 0.048249186
17 1 4 0.009283688
18 1 3 0.075484152

关于r - 如何获得矩阵中两列值之间的绝对差,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48951931/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com