- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的字典当前是这样设置的:
{'0001': {'Batting Hours': [79, 154, 50, 172],
'Bowling Hours': [101, 82, 298],
'Date': ['02/02/2019', '02/01/2019', '02/04/2019', '02/03/2019']},
'0002': {'Batting Hours': [7, 23, 40],
'Bowling Hours': [14, 30, 43],
'Date': ['02/04/2019', '02/01/2019', '02/02/2019']}}
如何解开该字典以使数据框具有如下输出:
Code Date Batting Hours Bowling Hours
0001 02/02/2019 79 101
0001 02/01/2019 154 82
我尝试查看有关如何解开其他类似数据结构的文档,但我似乎无法理解我的内容。
我目前正在将值附加到这样的列表中
player_agg_hours_dict[Player]['Batting Hours'].append(aggregate_batting_hours)
我正在尝试输出到这样的数据框:
output_df = pd.DataFrame.from_dict(player_agg_hours_dict, orient='index').transpose() # convert dict to dataframe
而且我知道 from_dict()
参数必须有所不同。
最佳答案
一种方法是结合使用 stack
和 unstack
:
v = pd.DataFrame(dct).stack()
(pd.DataFrame(v.tolist(), index=v.index)
.stack()
.unstack(0)
.reset_index(level=1, drop=True)
.rename_axis('Code')
.reset_index())
Code Batting Hours Bowling Hours Date
0 0001 79 101 02/02/2019
1 0001 154 82 02/01/2019
2 0001 50 298 02/04/2019
3 0001 172 NaN 02/03/2019
4 0002 7 14 02/04/2019
5 0002 23 30 02/01/2019
6 0002 40 43 02/02/2019
<小时/>
您还可以从 concat
开始一步完成此操作:
(pd.concat({k: pd.DataFrame.from_dict(v, orient='index') for k,v in dct.items()})
.stack()
.unstack(1)
.reset_index(level=1, drop=True)
.rename_axis('Code')
.reset_index())
Code Date Batting Hours Bowling Hours
0 0001 02/02/2019 79 101
1 0001 02/01/2019 154 82
2 0001 02/04/2019 50 298
3 0001 02/03/2019 172 NaN
4 0002 02/04/2019 7 14
5 0002 02/01/2019 23 30
6 0002 02/02/2019 40 43
关于python - 将嵌套字典解压到 pandas DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54521896/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!