- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
首先,我会说这不是正确运行 Keras 模型的方法。应该有一个训练集和测试集。该作业严格是为了培养直觉,因此没有测试集。
我正在通过神经元、激活函数、批处理和层的几种排列来运行模型。这是我正在使用的代码。
from sklearn.datasets import make_classification
X1, y1 = make_classification(n_samples=90000, n_features=17, n_informative=6, n_redundant=0, n_repeated=0, n_classes=8, n_clusters_per_class=3, weights=None, flip_y=.3, class_sep=.4, hypercube=False, shift=3, scale=2, shuffle=True, random_state=840780)
class_num = 8
# ----------------------------------------------------------------
import itertools
final_param_list = []
# param_list_gen order is units, activation function, batch size, layers
param_list_gen = [[10, 20, 50], ["sigmoid", "relu", "LeakyReLU"], [8, 16, 32], [1, 2]]
for element in itertools.product(*param_list_gen):
final_param_list.append(element)
# --------------------------------------------------------------------------------------
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, LeakyReLU
from keras.callbacks import History
import tensorflow as tf
import numpy as np
import pandas as pd
# --------------------------------------------------------------------------------------
# -------- Model 1 - permutations of neurons, activation funtions batch size and layers -------- #
for param in final_param_list:
q2model1 = Sequential()
# hidden layer 1
q2model1.add(Dense(param[0]))
if param[1] != 'LeakyReLU':
q2model1.add(Activation(param[1]))
else:
q2model1.add(LeakyReLU(alpha=0.1))
if param[3] == 2:
# hidden layer 2
q2model1.add(Dense(param[0]))
if param[1] != 'LeakyReLU':
q2model1.add(Activation(param[1]))
else:
q2model1.add(LeakyReLU(alpha=0.1))
# output layer
q2model1.add(Dense(class_num, activation='softmax'))
q2model1.compile(loss='sparse_categorical_crossentropy', optimizer='RMSProp', metrics=['accuracy'])
# Step 3: Fit the model
history = q2model1.fit(X1, y1, epochs=20)
看起来工作正常。现在,我的任务是输出每个时期的准确性,包括神经元、激活函数、批处理、层
现在,这给了我每个时期的所有准确性
print(history.history['acc'])
这给了我参数
print(param)
这给了我一个总结,尽管我不确定这是否是最好的方法
print(q2model1.summary())
有没有办法将每个纪元打印到 pandas 数据帧,使其看起来像这样?
阶段(列表索引 + 1)| # 神经元 |激活函数 |批量大小 |层 | Acc epoch1 | Acc 纪元2 | …… | Acc epoch20
就是这样。如果您发现模型本身有任何明显错误,或者我缺少一些关键代码,请告诉我
最佳答案
您可以尝试:
import pandas as pd
# assuming you stored your model.fit results in a 'history' variable:
history = model.fit(x_train, y_train, epochs=20)
# convert the history.history dictionary to a pandas dataframe:
hist_df = pd.DataFrame(history.history)
# checkout result with print e.g.:
print(hist_df)
# or the describe() method:
hist_df.describe()
Keras 还有一个 CSVLogger:https://keras.io/callbacks/#csvlogger这可能会引起兴趣。
关于python - 如何将 Keras 模型摘要写入数据框?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54975952/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!