- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经安装了NLTK包和其他依赖项,并设置环境变量如下:
STANFORD_MODELS=/mnt/d/stanford-ner/stanford-ner-2018-10-16/classifiers/english.all.3class.distsim.crf.ser.gz:/mnt/d/stanford-ner/stanford-ner-2018-10-16/classifiers/english.muc.7class.distsim.crf.ser.gz:/mnt/d/stanford-ner/stanford-ner-2018-10-16/classifiers/english.conll.4class.distsim.crf.ser.gz
CLASSPATH=/mnt/d/stanford-ner/stanford-ner-2018-10-16/stanford-ner.jar
当我尝试访问如下分类器时:
stanford_classifier = os.environ.get('STANFORD_MODELS').split(':')[0]
stanford_ner_path = os.environ.get('CLASSPATH').split(':')[0]
st = StanfordNERTagger(stanford_classifier, stanford_ner_path, encoding='utf-8')
我收到以下错误。但我不明白是什么导致了这个错误。
Error: Could not find or load main class edu.stanford.nlp.ie.crf.CRFClassifier
OSError: Java command failed : ['/mnt/c/Program Files (x86)/Common
Files/Oracle/Java/javapath_target_1133041234/java.exe', '-mx1000m', '-cp', '/mnt/d/stanford-ner/stanford-ner-2018-10-16/stanford-ner.jar', 'edu.stanford.nlp.ie.crf.CRFClassifier', '-loadClassifier', '/mnt/d/stanford-ner/stanford-ner-2018-10-16/classifiers/english.all.3class.distsim.crf.ser.gz', '-textFile', '/tmp/tmpaiqclf_d', '-outputFormat', 'slashTags', '-tokenizerFactory', 'edu.stanford.nlp.process.WhitespaceTokenizer', '-tokenizerOptions', '"tokenizeNLs=false"', '-encoding', 'utf8']
最佳答案
我找到了这个问题的答案。我正在使用 NLTK == 3.4。从 NLTK ==3.3 及以上版本开始,斯坦福 NLP(POS、NER、tokenizer)不会作为 nltk.tag 的一部分加载,而是从 nltk.parse.corenlp.CoreNLPParser 加载。 stackoverflow 的答案可以在 stackoverflow.com/questions/13883277/stanford-parser-and-nltk/… 中找到,官方文档的 github 链接是 github.com/nltk/nltk/wiki/Stanford-CoreNLP-API-in-NLTK .
其他信息,如果您面临来自 NER 标记器或 coreNLP API 的任何其他解析器的超时问题,请增加超时限制,如 https://github.com/nltk/nltk/wiki/Stanford-CoreNLP-API-in-NLTK/_compare/3d64e56bede5e6d93502360f2fcd286b633cbdb9...f33be8b06094dae21f1437a6cb634f86ad7d83f7 中所述。作者:dimazest。
关于python - NLTK 包和其他依赖项出现错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55185021/
NLTK 感知器标记器的标记集是什么?预训练模型使用的语料库是什么? 我试图从NLTK网站上找到官方信息。但他们没有那个。 最佳答案 来自 https://github.com/nltk/nltk/p
我无法理解这两者之间的区别。不过,我了解到word_tokenize将Penn-Treebank用于标记化目的。但TweetTokenizer上的任何内容都不可用。对于哪种类型的数据,我应该使用Twe
我正在学习 NLTK 和我的 mac 工作正常,除非我在 FreqDist() 上遇到问题。 (我看到另一个关于 FreqDist() 的问题,但他收到了不同的错误消息。TypeError: unha
我尝试了正则表达式词干分析器,但我得到了数百个不相关的标记。我只是对“播放”词干感兴趣。这是我正在使用的代码: import nltk from nltk.book import * f = open
我正在尝试使用 NLTK 命名实体标记器来识别各种命名实体。在使用 Python 进行自然语言处理一书中,他们提供了常用命名实体的列表(表 7.4,如果有人好奇的话),其中包括:日期 6 月,2008
我有很多文本数据,我想进行分类。我逐 block 递增地获取这些数据(例如 500 个样本)。我想用这些 block 在 NLTK 中对 NaiveBayesClassifier 进行训练,但要进行零
我在尝试运行实体提取功能时遇到问题。我相信这是版本差异。以下工作示例在 2.0.4 中运行,但不在 3.0 中运行。我确实将一个函数调用:batch_ne_chunk 更改为:nltk.ne_chun
我正在使用 docker 运行一个使用 nltk、languagetool 等的 NLP 系统... 当我使用 docker-compose build --build-arg env=dev我收到警
我正在检查 NLTK 的命名实体识别功能。是否可以找出提取出的哪个关键字与原文最相关?另外,是否可以知道提取的关键字的类型(人/组织)? 最佳答案 如果你有一个训练有素的标注器,你可以先标注你的文本,
我用过这个代码: # Step 1 : TOKENIZE from nltk.tokenize import * words = word_tokenize(text) # Step 2 : POS
当我运行 nltk.gaac.demo() 时 如果我错过了什么,你能帮我吗?我收到以下错误。 我使用的是nltk 3.0.1 Python 3.4.1 (v3.4.1:c0e311e010fc, M
我刚刚读了一篇关于如何使用 MALLET 进行主题建模的精彩文章,但我在网上找不到任何将 MALLET 与 NLTK 进行比较的内容,而我已经有过一些经验。 它们之间的主要区别是什么? MALLET
我试过这个,但它不起作用 from nltk.corpus import stopwords stopwords_list = stopwords.words('arabic') print(stop
我正在构建一个同时使用 NLTK 和 Spacy 的应用程序,并通过 Poetry 管理依赖项。我可以通过将此行添加到我的 pyproject.toml 来下载 Spacy 数据。下 [tool.po
我正在尝试使用 RegexpTokenizer 对文本进行分词。 代码: from nltk.tokenize import RegexpTokenizer #from nltk.tokenize i
我很好奇是否有人熟悉使用 NLTK's BLEU score calculation 之间的区别和 SacreBLEU library . 特别是,我使用了两个库的句子 BLEU 分数,对整个数据集进
我正在使用 nltk.word_tokenize用于标记一些包含编程语言、框架等的句子,这些句子被错误标记。 例如: >>> tokenize.word_tokenize("I work with C
我无法理解两者之间的区别。不过,我开始知道 word_tokenize 使用 Penn-Treebank 进行标记化。但是 TweetTokenizer 上没有任何内容可用。对于哪种数据,我应该使用
我需要对多种语言的文本进行名称实体提取:西类牙语、葡萄牙语、希腊语、捷克语、中文。 是否有这两个功能的所有支持语言的列表?是否有使用其他语料库的方法,以便可以包含这些语言? 最佳答案 默认情况下,这两
我是 python 的新手并使用 nltk,所以实际上我有一个非常基本的问题,但在任何地方都找不到答案。 我想知道什么时候在 nltk 模块的函数之前使用 nltk.。我正在处理一些任务,在某些情况下
我是一名优秀的程序员,十分优秀!