gpt4 book ai didi

python - Pandas 映射 groupby 在同一数据框中具有多个列

转载 作者:行者123 更新时间:2023-12-01 08:11:14 24 4
gpt4 key购买 nike

我有一个数据框df,我需要根据条件对多列进行分组。

df

user_id       area_id         group_id key year value     new
10835 48299 1 5 2011 0 ?
10835 48299 1 2 2010 0
10835 48299 2 102 2013 13100
10835 48299 2 5 2016 0
10836 48299 1 78 2017 67100
10836 48299 1 1 2012 54000
10836 48299 1 12 2018 0
10836 48752 1 7 2014 0
10836 48752 2 103 2015 5000
10837 48752 2 102 2016 5000
10837 48752 1 3 2017 0
10837 48752 1 103 2017 0
10837 49226 1 2 2011 4000
10837 49226 1 83 2011 4000
10838 49226 2 16 2011 0
10838 49226 1 75 2012 0
10838 49226 1 2 2012 4000
10838 49226 1 12 2013 1000
10839 49226 1 3 2015 6500
10839 49226 1 102 2016 7900
10839 49226 1 16 2017 0
10839 49226 2 6 2017 5500
22489 49226 2 89 2017 5000
22489 49226 1 102 2017 5000

我的目标是创建一个新列df['new']当前解决方案:

df['new'] =df['user_id'].map(df[df['key'].eq(102)].groupby(['user_id', 'area_id', 'group_id', 'year'])['value'].sum())

对于所有 df['new'] 值,我都得到 NaN。我猜测不可能使用 map 函数 以这种方式对多个列进行分组。有没有正确的方法来实现这一点?预先感谢您提供正确方向的提示。

最佳答案

您可以为新的DataFrame添加as_index=False:

df1 = (df[df['key'].eq(102)]
.groupby(['user_id', 'area_id', 'group_id', 'year'], as_index=False)['value']
.sum())
print (df1)
user_id area_id group_id year value
0 10835 48299 2 2013 13100
1 10837 48752 2 2016 5000
2 10839 49226 1 2016 7900
3 22489 49226 1 2017 5000

然后,如果可能的话,重复的 user_id 首先通过 DataFrame.drop_duplicates 获取唯一行,通过 DataFrame.set_index 创建系列 map :

df['new'] = df['user_id'].map(df1.drop_duplicates('user_id').set_index('user_id')['value'])
#if never duplicates
#df['new'] = df['user_id'].map(df1.set_index('user_id')['value'])
print (df)
user_id area_id group_id key year value new
0 10835 48299 1 5 2011 0 13100.0
1 10835 48299 1 2 2010 0 13100.0
2 10835 48299 2 102 2013 13100 13100.0
3 10835 48299 2 5 2016 0 13100.0
4 10836 48299 1 78 2017 67100 NaN
5 10836 48299 1 1 2012 54000 NaN
6 10836 48299 1 12 2018 0 NaN
7 10836 48752 1 7 2014 0 NaN
8 10836 48752 2 103 2015 5000 NaN
9 10837 48752 2 102 2016 5000 5000.0
10 10837 48752 1 3 2017 0 5000.0
11 10837 48752 1 103 2017 0 5000.0
12 10837 49226 1 2 2011 4000 5000.0
13 10837 49226 1 83 2011 4000 5000.0
14 10838 49226 2 16 2011 0 NaN
15 10838 49226 1 75 2012 0 NaN
16 10838 49226 1 2 2012 4000 NaN
17 10838 49226 1 12 2013 1000 NaN
18 10839 49226 1 3 2015 6500 7900.0
19 10839 49226 1 102 2016 7900 7900.0
20 10839 49226 1 16 2017 0 7900.0
21 10839 49226 2 6 2017 5500 7900.0
22 22489 49226 2 89 2017 5000 5000.0
23 22489 49226 1 102 2017 5000 5000.0

关于python - Pandas 映射 groupby 在同一数据框中具有多个列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55240497/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com