- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Keras 和 PyTorch 使用不同的参数进行填充:Keras 需要输入字符串,而 PyTorch 则使用数字。有什么区别,如何将一个转换为另一个(哪些代码在任一框架中获得相同的结果)?
PyTorch 还采用参数 in_channels、out_chanels,而 keras 只采用称为过滤器的参数。 “过滤器”是什么意思?
最佳答案
关于填充,
Keras => '有效' - 无填充; 'same' - 输入被填充,以便输出形状与输入形状相同
Pytorch => 您明确指定填充
有效填充
>>> model = keras.Sequential()
>>> model.add(keras.layers.Conv2D(filters=10, kernel_size=3, padding='valid', input_shape=(28,28,3)))
>>> model.layers[0].output_shape
(None, 26, 26, 10)
>>> x = torch.randn((1,3,28,28))
>>> conv = torch.nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3)
>>> conv(x).shape
torch.Size([1, 10, 26, 26])
相同的填充
>>> model = keras.Sequential()
>>> model.add(keras.layers.Conv2D(filters=10, kernel_size=3, padding='same', input_shape=(28,28,3)))
>>> model.layers[0].output_shape
(None, 28, 28, 10)
>>> x = torch.randn((1,3,28,28))
>>> conv = torch.nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, padding=1)
>>> conv(x).shape
torch.Size([1, 10, 28, 28])
W - 输入宽度,F - 过滤器(或内核)大小,P - 填充,S - 步长,Wout - 输出宽度
Wout = ((W−F+2P)/S)+1
高度也类似。使用此公式,您可以计算在输出中保留输入宽度或高度所需的填充量。
http://cs231n.github.io/convolutional-networks/
关于 in_channels、out_chanels 和过滤器,
过滤器与out_channels相同。在 Keras 中,in_channels 是自动从前一层形状或 input_shape(如果是第一层)推断出来的。
关于python - 将 Keras (Tensorflow) 卷积神经网络转换为 PyTorch 卷积网络?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55381052/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!