- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想使用 numpy fft 包进行快速傅里叶变换,然后我尝试比较解析解和快速傅里叶变换之间的结果,尽管我可以通过我所做的图看到曲线相似,很明显尺度不同。
我尝试了几种不同版本的频率(角频率、频率和波数),但我所有的尝试都不起作用,并且在numpy文档中,并不清楚快速傅里叶变换是如何准确定义的。例如,我想将指数函数及时进行傅里叶变换到角频域, f(t)=Exp(-a|t|), F(w)=a/pi*(a²+w² )(该解析解有多个版本,具体取决于我们考虑的频率空间)
def e(t):
return np.exp(-0.5*abs(t))
def F(w):
return 0.5/(np.pi)*(1/(((0.5)**2)+((w)**2)))
t=np.linspace(0,100,1000)
w=np.fft.fftfreq(len(t))
plt.plot(w,F(w),'o',label='F(w)')
plt.legend()
plt.show()
fourier=np.fft.fft(e(t))
plt.plot(w,fourier,'o')
plt.show()
我已经尝试了上述代码的多种不同变体,专门用于频率,但我仍然没有达到 fft 和解析解相似的程度。有人可以帮我吗?
最佳答案
Fourier transform可应用于可积函数,例如 np.exp(-0.5*abs(t))
。但是Discrete Fourier Transform计算周期信号的傅里叶变换。请参阅https://dsp.stackexchange.com/questions/26884/about-fourier-transform-of-periodic-signal和 What FFTW Really Computes .
因此,长度为 T 的帧的 DFT 对应于周期帧的傅里叶变换。由于帧从 0 开始,因此计算周期性右侧指数衰减的傅里叶变换: 如您所见,函数np.exp(-0.5*abs(t))
的一半未显示。让我们纠正它并添加该函数的周期性增加部分两侧指数衰减。我使用频率作为参数:
import matplotlib.pyplot as plt
import numpy as np
def e(t):
return np.exp(-0.5*abs(t))
def F(w):
return 0.5/(np.pi)*(1/(((0.5)**2)+((w)**2)))
def Fc(xi):
#ok , that's sourced from https://en.wikipedia.org/wiki/Fourier_transform ... Square-integrable functions, one-dimensional, line 207
return 2*0.5/(((0.5)**2)+(4*(np.pi*xi)**2))
framelength=100.
nbsample=1000
def ep(t):
#the periodized negative part is added at the end of the frame.
return np.maximum(np.exp(-0.5*abs(t)),np.exp(-0.5*abs(t-framelength)))
t=np.linspace(0,framelength,nbsample, endpoint=False)
#plotting the periodized signal, to see what's happening
ein=ep(t)
tp=np.linspace(0,10*framelength,10*nbsample, endpoint=False)
periodized=np.zeros(10*nbsample)
for i in range(10):
for j in range(nbsample):
periodized[i*nbsample+j]=ein[j]
plt.plot(tp,periodized,'k-',label='periodized frame')
plt.legend()
plt.show()
fourier=np.fft.fft(ep(t))/np.size(ep(t))*framelength
#comparing the mean is useful to check the overall scaling
print np.mean(ep(t))*framelength
print fourier[0]
print Fc(0)
#the frenquencies of the DFT of a frame of length T are 1/T, 2/T ... and negative for the second part of the array.
xi=np.fft.fftfreq(len(t), framelength/len(t))
# comparison between analytical Fourier transform and dft.
plt.plot(xi,Fc(xi),'o',label='F(xi)')
plt.plot(xi,np.real(fourier),'k-', lw=3, color='red', label='DTF')
plt.legend()
plt.show()
结果如下:
对于实验性非周期信号,当帧被周期化时,会出现人为的不连续性。它导致spectral leakage和 windows用于减弱不连续性及其影响。其中一个潜在窗口称为泊松窗口,是两侧指数衰减!
关于python - 应如何重新调整 fft 点以获得与解析解相同的结果?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55519419/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!