gpt4 book ai didi

python - 使用 TensorFlow Probability 的 Edward2 的简单哈密顿蒙特卡罗示例

转载 作者:行者123 更新时间:2023-12-01 08:05:42 26 4
gpt4 key购买 nike

爱德华示例

Edward已弃用,需要旧版本的 TensorFlow,可以为以下示例创建专用的虚拟环境

$ python3 --version
Python 3.6.8
$ python3 -m venv edward
$ source edward/bin/activate
(edward) $ pip3 install --upgrade pip setuptools wheel
(edward) $ cat edward.txt
tensorflow==1.7
edward~=1.3
scipy~=1.2
pandas~=0.24
matplotlib~=3.0
(edward) $ pip3 install -r edward.txt

我有一个非常简单的最小工作示例,将哈密尔顿蒙特卡罗与爱德华一起使用,称为edward_old.py

#!/usr/bin/env python3

import numpy as np
import scipy.stats
import tensorflow as tf
import edward as ed
import pandas as pd
import matplotlib.pyplot as plt


def generate_samples(data, n_samples):
# Pick initial point for MCMC chains based on the data
low, med, high = np.percentile(data, (16, 50, 84))
mu_init = np.float32(med)
t_init = np.float32(np.log(0.5 * (high - low)))

# Build a very simple model
mu = ed.models.Uniform(-1.0, 1.0)
t = ed.models.Uniform(*np.log((0.05, 1.0), dtype=np.float32))
X = ed.models.Normal(
loc=tf.fill(data.shape, mu), scale=tf.fill(data.shape, tf.exp(t))
)

# Emperical samples of a sclar
q_mu = ed.models.Empirical(params=tf.Variable(tf.fill((n_samples,), mu_init)))
q_t = ed.models.Empirical(params=tf.Variable(tf.fill((n_samples,), t_init)))

# Run inference using HMC to generate samples.
with tf.Session() as sess:
inference = ed.HMC({mu: q_mu, t: q_t}, data={X: data})
inference.run(step_size=0.01, n_steps=10)
mu_samples, t_samples = sess.run([q_mu.params, q_t.params])
return mu_samples, t_samples


def visualize(samples, mu_grid, sigma_grid):
fig, ax = plt.subplots(1, 1, figsize=(6, 5))
ax.scatter(samples['mu'], samples['sigma'], s=5, lw=0, c='black')
ax.set_xlim(mu_grid[0], mu_grid[-1])
ax.set_ylim(sigma_grid[0], sigma_grid[-1])
ax.set_title('Edward')
ax.set_xlabel('$\mu$')
ax.set_ylabel('$\sigma$')
plt.savefig('edward_old.pdf')


def main():
np.random.seed(0)
tf.set_random_seed(0)

# Generate pseudodata from draws from a single normal distribution
dist_mean = 0.0
dist_std = 0.5
n_events = 5000
toy_data = scipy.stats.norm.rvs(dist_mean, dist_std, size=n_events)

mu_samples, t_samples = generate_samples(toy_data, n_events)
samples = pd.DataFrame({'mu': mu_samples, 'sigma': np.exp(t_samples)})

n_grid = 50
mu_grid = np.linspace(*np.percentile(mu_samples, (0.5, 99.5)), n_grid)
sigma_grid = np.linspace(*np.exp(np.percentile(t_samples, (0.5, 99.5))), n_grid)
visualize(samples, mu_grid, sigma_grid)


if __name__ == '__main__':
main()

生成下面的图

(edward) $ python3 edward_old.py

enter image description here

爱德华2示例

但是,当我尝试使用 TensorFlow Probability 复制它时和 Edward2具有以下环境

$ python3 --version
Python 3.6.8
$ python3 -m venv tfp-edward2
$ source tfp-edward2/bin/activate
(tfp-edward2) $ pip3 install --upgrade pip setuptools wheel
(tfp-edward2) $ cat tfp-edward2.txt
tensorflow~=1.13
tensorflow-probability~=0.6
scipy~=1.2
pandas~=0.24
matplotlib~=3.0
(tfp-edward2) $ pip3 install -r tfp-edward2.txt

以及名为 edward2.py 的文件中 edward_old.pygenerate_samples 的以下更改

#!/usr/bin/env python3

import numpy as np
import scipy.stats
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import edward2 as ed
import pandas as pd
import matplotlib.pyplot as plt


def generate_samples(data, n_samples):
# Pick initial point for MCMC chains based on the data
low, med, high = np.percentile(data, (16, 50, 84))
mu_init = np.float32(med)
t_init = np.float32(np.log(0.5 * (high - low)))

def model(data_shape):
mu = ed.Uniform(
low=tf.fill(data_shape, -1.0), high=tf.fill(data_shape, 1.0), name="mu"
)
t = ed.Uniform(
low=tf.log(tf.fill(data_shape, 0.05)),
high=tf.log(tf.fill(data_shape, 1.0)),
name="t",
)
x = ed.Normal(loc=mu, scale=tf.exp(t), name="x")
return x

log_joint = ed.make_log_joint_fn(model)

def target_log_prob_fn(mu, t):
"""Target log-probability as a function of states."""
return log_joint(data.shape, mu=mu, t=t, x=data)

step_size = tf.get_variable(
name='step_size',
initializer=0.01,
use_resource=True, # For TFE compatibility
trainable=False,
)

num_burnin_steps = 1000

hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=target_log_prob_fn,
num_leapfrog_steps=5,
step_size=step_size,
step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(
num_adaptation_steps=int(num_burnin_steps * 0.8)
),
)

# How should these be done?
q_mu = tf.random_normal(data.shape, mean=mu_init)
q_t = tf.random_normal(data.shape, mean=t_init)

states, kernel_results = tfp.mcmc.sample_chain(
num_results=n_samples,
current_state=[q_mu, q_t],
kernel=hmc_kernel,
num_burnin_steps=num_burnin_steps,
)

# Initialize all constructed variables.
init_op = tf.global_variables_initializer()

# Run the inference using HMC to generate samples
with tf.Session() as sess:
init_op.run()
states_, results_ = sess.run([states, kernel_results])

mu_samples, t_samples = states_[0][0], states_[1][0]
return mu_samples, t_samples

运行

(tfp-edward2) $ python3 edward2.py

表明存在一些明显的问题。我认为我没有正确地制定与 ed.models.Empirical 相当的内容,因此,如果对此有任何想法或我做错的其他事情,那就太好了。

我已经尝试遵循“Upgrading from Edward to Edward2 ”示例,但我还无法充分理解它们,无法从 deep_exponential_family 模型中使用的示例转移到此示例。

最佳答案

我给自己制造的问题完全搞乱了我的分布的形状。我一开始未能正确理解的是我的 tfp.mcmc.sample_chaincurrent_state 应该是标量 (shape==() )代表链的初始位置。一旦我意识到这一点,就很清楚这些位置 q_muq_t 的形状完全错误,应该是根据数据确定的位置的样本平均值

q_mu = tf.reduce_mean(tf.random_normal((1000,), mean=mu_init))
q_t = tf.reduce_mean(tf.random_normal((1000,), mean=t_init))

由于这些值是标量,所以我创建模型的形状也是错误的。我一直在创建与我的数据形状相同的随机变量样本,错误地认为这只是将 x 的形状移动到 mu 的形状>t。当然,mut 是来自各自均匀分布的标量随机变量,它们是 x 正态分布的参数绘制了哪些 data.shape 样本。

def model(data_shape):
mu = ed.Uniform(low=-1.0, high=1.0, name="mu")
t = ed.Uniform(low=tf.log(0.05), high=tf.log(1.0), name="t")
x = ed.Normal(
loc=tf.fill(data_shape, mu), scale=tf.fill(data_shape, tf.exp(t)), name="x"
)
return x

完成此操作后,唯一剩下要做的就是立即正确访问状态

with tf.Session() as sess:
init_op.run()
states_, results_ = sess.run([states, kernel_results])
mu_samples, t_samples = (states_[0], states_[1])

这会产生下面的图像

(tfp-edward2) $ python3 edward2.py

这与使用 Edward 的原始版本非常匹配。

enter image description here

完全更正的脚本如下

#!/usr/bin/env python3

import numpy as np
import scipy.stats
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import edward2 as ed
import pandas as pd
import matplotlib.pyplot as plt


def generate_samples(data, n_samples):
# Pick initial point for MCMC chains based on the data
low, med, high = np.percentile(data, (16, 50, 84))
mu_init = np.float32(med)
t_init = np.float32(np.log(0.5 * (high - low)))

def model(data_shape):
mu = ed.Uniform(low=-1.0, high=1.0, name="mu")
t = ed.Uniform(low=tf.log(0.05), high=tf.log(1.0), name="t")
x = ed.Normal(
loc=tf.fill(data_shape, mu), scale=tf.fill(data_shape, tf.exp(t)), name="x"
)
return x

log_joint = ed.make_log_joint_fn(model)

def target_log_prob_fn(mu, t):
"""Target log-probability as a function of states."""
return log_joint(data.shape, mu=mu, t=t, x=data)

step_size = tf.get_variable(
name='step_size',
initializer=0.01,
use_resource=True, # For TFE compatibility
trainable=False,
)

num_burnin_steps = 1000

hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=target_log_prob_fn,
num_leapfrog_steps=5,
step_size=step_size,
step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(
num_adaptation_steps=int(num_burnin_steps * 0.8)
),
)

# Initial states of chains
q_mu = tf.reduce_mean(tf.random_normal((1000,), mean=mu_init))
q_t = tf.reduce_mean(tf.random_normal((1000,), mean=t_init))

states, kernel_results = tfp.mcmc.sample_chain(
num_results=n_samples,
current_state=[q_mu, q_t],
kernel=hmc_kernel,
num_burnin_steps=num_burnin_steps,
)

# Initialize all constructed variables.
init_op = tf.global_variables_initializer()

# Run the inference using HMC to generate samples
with tf.Session() as sess:
init_op.run()
states_, results_ = sess.run([states, kernel_results])
mu_samples, t_samples = (states_[0], states_[1])

return mu_samples, t_samples


def visualize(samples, mu_grid, sigma_grid):
fig, ax = plt.subplots(1, 1, figsize=(6, 5))
ax.scatter(samples['mu'], samples['sigma'], s=5, lw=0, c='black')
ax.set_xlim(mu_grid[0], mu_grid[-1])
ax.set_ylim(sigma_grid[0], sigma_grid[-1])
ax.set_title('tfp and Edward2')
ax.set_xlabel('$\mu$')
ax.set_ylabel('$\sigma$')
plt.savefig('tfp-edward2.pdf')
plt.savefig('tfp-edward2.png')


def main():
np.random.seed(0)
tf.set_random_seed(0)

# Generate pseudodata from draws from a single normal distribution
dist_mean = 0.0
dist_std = 0.5
n_events = 5000
toy_data = scipy.stats.norm.rvs(dist_mean, dist_std, size=n_events)

mu_samples, t_samples = generate_samples(toy_data, n_events)
samples = pd.DataFrame({'mu': mu_samples, 'sigma': np.exp(t_samples)})

n_grid = 50
mu_grid = np.linspace(*np.percentile(mu_samples, (0.5, 99.5)), n_grid)
sigma_grid = np.linspace(*np.exp(np.percentile(t_samples, (0.5, 99.5))), n_grid)
visualize(samples, mu_grid, sigma_grid)


if __name__ == '__main__':
main()

关于python - 使用 TensorFlow Probability 的 Edward2 的简单哈密顿蒙特卡罗示例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55546358/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com