gpt4 book ai didi

python - 使用附加变量进行回归优化

转载 作者:行者123 更新时间:2023-12-01 08:04:25 24 4
gpt4 key购买 nike

我得到的数据由 X 和 Y 点组成 (x_1,...x_n; y1,...y_n)

我想使用两个基本函数将 X 拟合到 Y:max(x,mu_1)min(x,mu_2)

换句话说,我想估计以下方程:

y_i = a_1*max(x_i,mu_1)+a_2*min(x_i,mu_2)

我想找到 mu_1mu_2 以使上面的拟合效果最好。我的意思是这样的 mu_1mu_2 ,这样当我将 Y 拟合到 X 时,残差平方和就会最小化。

或者我可以说我需要 a_1a_2mu_1mu_2 这样的总和上述拟合的残差平方被最小化。

我尝试执行以下操作:

我创建了两个参数的函数(mu_1和mu_2),它返回Y与X的拟合质量。然后我尝试使用scipy.optimize优化这个函数。最小化。这是代码:

import numpy as np
from scipy.optimize import minimize
from sklearn.linear_model import LinearRegression

###Create X and Y
X = np.random.normal(10,1,size = 10000)
Y = np.random.normal(20,1,size = 10000)

###Create function that estimates quality of fit

def func(mu_1,mu_2):
### basis functions
regressor_1 = np.maximum(X,mu_1).reshape(-1,1)
regressor_2 = np.minimum(X,mu_2).reshape(-1,1)
x_train = np.hstack((regressor_1,regressor_2))

model = LinearRegression().fit(x_train,Y)

###I didnt find how to extract sum of squared residual, but I can get R
squared, so I thought that minimizing SSR is the same as maximizing R
squared and it is the same as minimizing -R^2

objective = model.score(x_train,Y)
return -1*objective

### Now I want to find such mu_1 and mu_2 that minimize "func"
minimum = minimize(func,0,0)
minimum.x

这不起作用。我将非常感谢任何帮助。

最佳答案

这个图形拟合程序使用您的功能,它似乎可以满足您的要求。

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import warnings

xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7])
yData = numpy.array([1.1, 20.2, 30.3, 60.4, 50.0, 60.6, 70.7])


def func(x, a_1, a_2, mu_1, mu_2):
retArray = []
for x_i in x: # process data points individually
val = a_1*max(x_i,mu_1) + a_2*min(x_i,mu_2)
retArray.append(val)
return retArray


# turn off the curve_fit() "covariance estimation" warning
warnings.filterwarnings("ignore")

# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0, 1.0, 1.0])

# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)

modelPredictions = func(xData, *fittedParameters)

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)

# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')

# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)

# now the model as a line plot
axes.plot(xModel, yModel)

axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label

plt.show()
plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)

关于python - 使用附加变量进行回归优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55608594/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com