- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有点卡在一个简单的练习上,希望得到一些帮助。
我正在尝试使用 Matlab 中的“interp2”函数对维度 [15x12] 的变量“tmin”进行一些简单的二维插值:
lat = 15:1.5:32;
lon = 70:1.5:92;
lat_interp = 15:1:32;
lon_interp = 70:1:92;
[X,Y] = meshgrid(lat,lon);
[Xi,Yi] = meshgrid(lat_interp,lon_interp);
tmin_interp = zeros(length(lon_interp),length(lat_interp),Num_Days);
tmin_interp(:,:) = interp2(X,Y,tmin(:,:),Xi,Yi,'linear');
此代码导致 tmin_interp 的最后一行和最后一列为 NaN,即:
tmin_interp(23,1:18) ==> NaN
tmin_interp(1:23,18) ==> NaN
有谁知道我可能做错了什么?我在插值设置方面犯了一个简单的错误吗?感谢您的宝贵时间。
最佳答案
它们是 nan
的原因s 是您的网格前后没有数据可以插值。线性插值使用 Xi,Yi
处的场梯度, 以估计该点的值。如果两边什么都没有,它就不能。
您可以使用 extrapval
在 X,Y
之外外推的参数你指定。只需添加参数 0
在 'linear'
之后:
interp2(X,Y,tmin(:,:),Xi,Yi,'linear', 0);
这将为“边缘”的点置零。但是,对于外部点,它们可能会下降到某个默认值,例如零。为此,您可以在 tmin
前后添加零。 :
tmin_padded = [ zeros(1,size(tmin,2)+2)
zeros(size(tmin,1),1) tmin zeros(size(tmin,1),1)
zeros(1,size(tmin,2)+2) ];
(还没有检查这个,但你明白了。)你还需要向 X
添加一些前值和后值。和 Y
.
如果是 tmin 的“外部”或“默认”值,则使用其他值。
PS 你为什么要创建 tmin_interp
作为 3 维?
关于关于边缘 NaN 的 Matlab "interp2"问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7477922/
n <- akima :: interp( x, y, z, xo = seq(min(x), max(x), length = 100), yo =
我正在使用一个 numpy 掩码数组来执行一些图像处理。掩膜用于处理图像周围的 NoData 像素(必要的边界,因为这些是原点在无数据像素中的 map 投影图像)。 使用以下代码块,我能够对图像执行高
我有一个包含电阻 (self.interp_data[:,0]) 和相应温度 (self.interp_data[:,1]) 的列表。我想使用 numpy 中的 interp 函数从我测量的电阻中确定
我是 python 编码新手: 我有一个温度列表,对于未记录温度的日子,使用值 9999。我想使用 np.interp tp 通过列表进行插值以删除 9999 和估计值。例如 最大温度 = [40,
我正在尝试将低分辨率曲线(10 个数据点)线性插值到更高分辨率(~1000 个数据点)。我想要的是一条形状相同但具有更多 x 和 y 值的新曲线,即高分辨率和低分辨率曲线在绘制为线条时看起来无法区分。
在我的 C++ 代码中,如果我为每个线程创建一个 tcl interp,并将它用于 Tcl_EvalEx 脚本,并通过 Tcl_GetStringResult 获取结果,这个线程安全吗? 除常量数据外
我有以下问题。我试图找到在 x 坐标的二维数组上使用 numpy 插值方法的最快方法。 import numpy as np xp = [0.0, 0.25, 0.5, 0.75, 1.0] np.r
我正在使用 imwarp 修改这样的图像: WarpedImage=imwarp(Image, tform, 'OutputView', imref2dObject); 我想定义 the manual
使用 interp 函数(Akima 包),可以绘制与数据集的二元插值相对应的表面,请参见下面的示例(来自 interp 文档): library(rgl) data(akima) # data vi
我正在使用 imwarp 修改这样的图像: WarpedImage=imwarp(Image, tform, 'OutputView', imref2dObject); 我想定义 the manual
我遇到了以下问题: 使用不同的代码,我生成生成 x 和 y 值、频率和强度的文件。我使用 2 种不同的方法,因此得到 2 组不同的 x,y。这个想法是将一个与另一个标准化以获得标准化通量。然而,辅助代
我想插入一个 numpy 数组,np.interp 几乎完全符合我的要求: interp(x, xp, fp, left=None, right=None) One-dimensional linea
我有一个 float 的一维数组 A,它大部分都很好,但缺少一些值。丢失的数据被替换为 nan(不是数字)。我必须通过附近良好值的线性插值来替换数组中的缺失值。所以,例如: F7(np.array([
我想将在一组动态频率下进行的测量插入到一组固定频率中。我将 Python 3.7 与 pandas.apply 和 numpy.interp 结合使用: import numpy as np impo
我有以下经验数据: emp_data = np.array([[0.5, -24.111869188789498], [1.0, -30.166986253668671], [1.5, -33.310
numpy.interp 很方便,也比较快。在某些情况下,我想将其输出与传播稀疏值的非插值变体(在“更密集”的输出中)进行比较,结果在稀疏输入之间是分段常数。我想要的函数也可以称为“稀疏 -> 密集”
我正在做一个android项目,需要集成Spotify流媒体功能。现在我可以加载动态库和调用函数了,但是有一些问题。 callbacks.notify_main_thread = callback_n
有人可以建议如何纠正这个问题? Traceback (most recent call last): File "/home/morpheus/.local/lib/python3.8/site-
我目前正在研究一些轻量级 SQL 抽象模块。我的工作流程是这样的,我通常手动编写 SELECT 查询,并通过采用哈希值的 subs 编写 INSERT/UPDATE 查询。 这两个模块似乎都很适合我的
编辑:编辑代码以产生与 Matlab 一致的结果。见下文。 我正在将 Matlab 脚本转换为 Python,并且线性插值结果在某些情况下有所不同。我想知道为什么以及是否有任何方法可以解决这个问题?
我是一名优秀的程序员,十分优秀!