- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试通过遍历数据集中的列来生成交互式部分依赖图。
一个可重现的例子:
library(pdp)
library(xgboost)
library(Matrix)
library(ggplot2)
library(plotly)
data(mtcars)
target <- mtcars$mpg
mtcars$mpg <- NULL
mtcars.sparse <- sparse.model.matrix(target~., mtcars)
fit <- xgboost(data=mtcars.sparse, label=target, nrounds=100)
for (i in seq_along(names(mtcars))){
p1 <- pdp::partial(fit,
pred.var = names(mtcars)[i],
pred.grid = data.frame(unique(mtcars[names(mtcars)[i]])),
train = mtcars.sparse,
type = "regression",
cats = c("cyl", "vs", "am", "gear", "carb"),
plot = FALSE)
p2 <- ggplot(aes_string(x = names(mtcars)[i] , y = "yhat"), data = p1) +
geom_line(color = '#E51837', size = .6) +
labs(title = paste("Partial Dependence plot of", names(mtcars)[i] , sep = " ")) +
theme(text = element_text(color = "#444444", family = 'Helvetica Neue'),
plot.title = element_text(size = 13, color = '#333333'))
print(ggplotly(p2, tooltip = c("x", "y")))
}
我的真实数据集(约 22k 行,30 列)的绘图循环大约需要 2 小时。关于如何加快速度的任何想法?
最佳答案
由于 R 中使用数据结构的方式,如果您不小心,for()
循环可能会非常慢。如果你想知道更多这背后的技术原因,看看Advanced R哈德利·威克姆 (Hadley Wickham)。
实际上,有两种主要的方法可以加快您要执行的操作:优化 for()
循环,以及使用 apply()
系列职能。虽然这两种方法都可以很好地工作,但 apply()
方法往往更快,甚至比优化编写的 for()
循环更快,所以我会坚持使用该解决方案。
apply
方法:
plotFunction <-
function(x) {
p1 <- pdp::partial(fit,
pred.var = x,
pred.grid = data.frame(unique(mtcars[x])),
train = mtcars.sparse,
type = "regression",
cats = c("cyl", "vs", "am", "gear", "carb"),
plot = FALSE)
p2 <- ggplot(aes_string(x = x , y = "yhat"), data = p1) +
geom_line(color = '#E51837', size = .6) +
labs(title = paste("Partial Dependence plot of", x , sep = " ")) +
theme(text = element_text(color = "#444444", family = 'Helvetica Neue'),
plot.title = element_text(size = 13, color = '#333333'))
return(p2)
}
plot.list <- lapply(varNames, plotFunction)
system.time(lapply(varNames, plotFunction))
user system elapsed
0.471 0.004 0.488
在您的 for()
循环上运行相同的基准测试得到:
user system elapsed
3.945 0.616 3.519
您会注意到,只需将循环代码粘贴到一个函数中并稍作修改,速度就会提高大约 10 倍。
如果你想要额外的速度,你可以对你的函数做一些调整,但也许 apply()
方法最强大的方面是它很适合并行化,这可以用 pbmcapply
实现 pbmcapply
可以让您更快;
library(pdp)
library(xgboost)
library(Matrix)
library(ggplot2)
library(plotly)
library(pbmcapply)
# Determines the number of cores you want to use for paralell processing
# I like to leave two of mine available, but you can get away with 1
nCores <- detectCores() - 1
data(mtcars)
target <- mtcars$mpg
mtcars$mpg <- NULL
mtcars.sparse <- sparse.model.matrix(target~., mtcars)
fit <- xgboost(data=mtcars.sparse, label=target, nrounds=100)
varNames <-
names(mtcars) %>%
as.list
plotFunction <-
function(x) {
p1 <- pdp::partial(fit,
pred.var = x,
pred.grid = data.frame(unique(mtcars[x])),
train = mtcars.sparse,
type = "regression",
cats = c("cyl", "vs", "am", "gear", "carb"),
plot = FALSE)
p2 <- ggplot(aes_string(x = x , y = "yhat"), data = p1) +
geom_line(color = '#E51837', size = .6) +
labs(title = paste("Partial Dependence plot of", x , sep = " ")) +
theme(text = element_text(color = "#444444", family = 'Helvetica Neue'),
plot.title = element_text(size = 13, color = '#333333'))
return(p2)
}
plot.list <- pbmclapply(varNames, plotFunction, mc.cores = nCores)
让我们看看它是怎么做到的
user system elapsed
0.842 0.458 0.320
相对于 lapply()
的小改进,但这种改进应该与更大的数据集一起扩展。希望这对您有所帮助!
关于r - 使用极慢的循环在 R 中生成交互式部分依赖图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55288281/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!