- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在对具有负二项式分布的变量进行建模。我不想预测预期平均值,而是想对分布的两个参数进行建模。所以我的神经网络的输出层由两个神经元组成。为此,我需要编写一个自定义损失函数。但下面的代码不起作用 - 似乎是迭代张量的问题。
我应该如何使用 Keras(和 TensorFlow)编写负二项式分布的损失函数?
我只需要重写这段代码,使用对 TensorFlow 张量友好的代码。根据我收到的错误,也许 tensorflow.map_fn
可能会带来解决方案,但我对此没有运气。
这通常运行良好,但不适用于 Keras/Tensorflow
from scipy.stats import nbinom
from keras import backend as K
import tensorflow as tf
def loss_neg_bin(y_pred, y_true):
result = 0.0
for p, t in zip(y_pred, y_true):
result += -nbinom.pmf(t, p[0], min(0.99, p[1]))
return result
我得到的错误:
TypeError: Tensor objects are only iterable when eager execution is enabled. To iterate over this tensor use tf.map_fn.
最佳答案
您需要tf.map_fn
实现循环和tf.py_func
总结nbinom.pmf
。例如:
from scipy.stats import nbinom
import tensorflow as tf
def loss_neg_bin(y_pred, y_true):
result = 0.0
for p, t in zip(y_pred, y_true):
result += -nbinom.pmf(t, p[0], min(0.99, p[1]))
return result
y_pred= [[0.4, 0.4],[0.5, 0.5]]
y_true= [[1, 2],[1, 2]]
print('your version:\n',loss_neg_bin(y_pred, y_true))
def loss_neg_bin_tf(y_pred, y_true):
result = tf.map_fn(lambda x:tf.py_func(lambda p,t:-nbinom.pmf(t, p[0], min(0.99,p[1]))
,x
,tf.float64)
,(y_pred,y_true)
,dtype=tf.float64)
result = tf.reduce_sum(result,axis=0)
return result
y_pred_tf = tf.placeholder(shape=(None,2),dtype=tf.float64)
y_true_tf = tf.placeholder(shape=(None,2),dtype=tf.float64)
loss = loss_neg_bin_tf(y_pred_tf, y_true_tf)
with tf.Session() as sess:
print('tensorflow version:\n',sess.run(loss,feed_dict={y_pred_tf:y_pred,y_true_tf:y_true}))
# print
your version:
[-0.34313146 -0.13616026]
tensorflow version:
[-0.34313146 -0.13616026]
此外,如果您使用tf.py_func
要计算负二项式的概率质量函数作为损失反馈模型,您需要自己定义梯度函数。
更新——添加可微负二项式损失
nbinom
的概率质量函数是:
nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k
对于k >= 0
根据scipy.stats.nbinom .
所以我添加了可微分负二项式损失版本。
import tensorflow as tf
def nbinom_pmf_tf(x,n,p):
coeff = tf.lgamma(n + x) - tf.lgamma(x + 1) - tf.lgamma(n)
return tf.cast(tf.exp(coeff + n * tf.log(p) + x * tf.log(1 - p)),dtype=tf.float64)
def loss_neg_bin_tf_differentiable(y_pred, y_true):
result = tf.map_fn(lambda x: -nbinom_pmf_tf(x[1]
, x[0][0]
, tf.minimum(tf.constant(0.99,dtype=tf.float64),x[0][1]))
,(y_pred,y_true)
,dtype=tf.float64)
result = tf.reduce_sum(result,axis=0)
return result
y_pred_tf = tf.placeholder(shape=(None,2),dtype=tf.float64)
y_true_tf = tf.placeholder(shape=(None,2),dtype=tf.float64)
loss = loss_neg_bin_tf_differentiable(y_pred_tf, y_true_tf)
grads = tf.gradients(loss,y_pred_tf)
y_pred= [[0.4, 0.4],[0.5, 0.5]]
y_true= [[1, 2],[1, 2]]
with tf.Session() as sess:
print('tensorflow differentiable version:')
loss_val,grads_val = sess.run([loss,grads],feed_dict={y_pred_tf:y_pred,y_true_tf:y_true})
print(loss_val)
print(grads_val)
# print
tensorflow differentiable version:
[-0.34313146 -0.13616026]
[array([[-0.42401619, 0.27393084],
[-0.36184822, 0.37565048]])]
关于python - 我应该如何使用 Keras(和 TensorFlow)编写负二项分布的损失函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55782674/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!