gpt4 book ai didi

python - Python 中的 Monte Carlo 和 Metropolis 算法非常慢

转载 作者:行者123 更新时间:2023-12-01 07:57:22 26 4
gpt4 key购买 nike

我正在尝试用 Python 实现一个简单的蒙特卡洛(我对此还很陌生)。来自 C 我可能走的是最错误的道路,因为我的代码对于我所要求的来说太慢了:对于 60 个 3d 粒子和周期性边界条件(PBC),我有一个潜在的硬球状(请参阅代码中的 V_pot(r) ) ),所以我定义了以下函数

import timeit
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from numpy import inf
#
L, kb, d, eps, DIM = 100, 1, 1, 1, 3
r_c, T = L/2, eps/(.5*kb)
beta = 1/(kb*T)
#
def dist(A, B):
d = A - B
d -= L*np.around(d/L)
return np.sqrt(np.sum(d**2))

#
def V_pot(r):
V = -eps*(d**6/r**6 - d**6/r_c**6)
if r > r_c:
V = 0
elif r < d:
V = inf

return V

#
def ener(config):
V_jk_val, j = 0, N
#
while (j > 0):
j -= 1
i = 0
while (i < j):
V_jk_val += V_pot(dist(config[j,:], config[i,:]))
i += 1

#
return V_jk_val

#
def acc(en_n, en_o):
d_en = en_n-en_o
if (d_en <= 0):
acc_val = 1
else:
acc_val = np.exp(-beta*(d_en))

return acc_val

#

然后,从配置开始(其中数组的每一行代表 3D 粒子的坐标)

config = np.array([[16.24155657, 57.41672173, 94.39565792],
[76.38121764, 55.88334066, 5.72255163],
[38.41393783, 58.09432145, 6.26448054],
[86.44286438, 61.37100899, 91.97737383],
[37.7315366 , 44.52697269, 23.86320444],
[ 0.59231801, 39.20183376, 89.63974115],
[38.00998141, 3.84363202, 52.74021401],
[99.53480756, 69.97688928, 21.43528924],
[49.62030291, 93.60889503, 15.73723259],
[54.49195524, 0.6431965 , 25.37401196],
[33.82527814, 25.37776021, 67.4320553 ],
[64.61952893, 46.8407798 , 4.93960443],
[60.47322732, 16.48140136, 33.26481306],
[19.71667792, 46.56999616, 35.61044526],
[ 5.33252557, 4.44393836, 60.55759256],
[44.95897856, 7.81728046, 10.26000715],
[86.5548395 , 49.74079452, 4.80480133],
[52.47965686, 42.831448 , 22.03890639],
[ 2.88752006, 59.84605062, 22.75760029],
[ 9.49231045, 42.08653603, 40.63380097],
[13.90093641, 74.40377984, 32.62917915],
[97.44839233, 90.47695772, 91.60794836],
[51.29501624, 27.03796277, 57.09525454],
[10.30180295, 21.977336 , 69.54173272],
[59.61327648, 14.29582325, 11.70942289],
[89.52722796, 26.87758644, 76.34934637],
[82.03736088, 78.5665713 , 23.23587395],
[79.77571695, 66.140968 , 53.6784269 ],
[82.86070472, 40.82189833, 51.48739072],
[99.05647523, 98.63386809, 6.33888993],
[31.02997123, 66.99709163, 95.88332332],
[97.71654767, 59.24793618, 5.20183793],
[ 6.79964473, 45.01258652, 48.69477807],
[93.34977049, 55.20537774, 82.35693526],
[17.35577815, 20.45936211, 29.27981422],
[55.51942207, 52.22875901, 3.6616131 ],
[61.45612224, 36.50170405, 62.89796773],
[23.55822368, 7.09069623, 37.38274914],
[39.57082799, 58.95457592, 48.0304924 ],
[93.94997617, 64.34383203, 77.63346308],
[17.47989107, 90.01113402, 81.00648645],
[86.79068539, 66.35768515, 56.64402907],
[98.71924121, 38.33749023, 73.4715132 ],
[ 0.42356139, 78.32172925, 15.19883322],
[77.75572529, 2.60088767, 56.4683935 ],
[49.76486142, 3.01800153, 93.48019286],
[42.54483899, 4.27174457, 4.38942325],
[66.75777178, 41.1220603 , 19.64484167],
[19.69520773, 41.09230171, 2.51986091],
[73.20493772, 73.16590392, 99.19174281],
[94.16756184, 72.77653334, 10.32128552],
[29.95281655, 27.58596604, 85.12791195],
[ 2.44803886, 32.82333962, 41.6654683 ],
[23.9665915 , 49.94906612, 37.42701059],
[30.40282934, 39.63854309, 47.16572743],
[56.04809276, 30.19705527, 29.15729635],
[ 2.50566522, 70.37965564, 16.78016719],
[28.39713572, 4.04948368, 27.72615789],
[26.11873563, 41.49557167, 14.38703697],
[81.91731981, 12.10514972, 12.03083427]])

我使用以下代码进行了 5000 个时间步的模拟

N = 60
TIME_MC = 5000
DELTA_LIST = [d]
#d/6, d/3, d, 2*d, 3*d
np.random.seed(19680801)
en_mc_delta = np.zeros((TIME_MC, len(DELTA_LIST)))
start = timeit.default_timer()
config_tmp = config
#
for iD, Delta in enumerate(DELTA_LIST):
t=0

while (t < TIME_MC):
for k in range(N):
RND = np.random.rand()
config_tmp[k,:] = config[k,:] + Delta*(np.random.random_sample((1,3))-.5)
en_o, en_n = ener(config), ener(config_tmp)
ACC = acc(en_n, en_o)
if (RND < ACC):
config[k,:] = config_tmp[k,:]
en_o = en_n


en_mc_delta[t][iD] = en_o
t += 1


stop = timeit.default_timer()
print('Time: ', stop-start)

遵循 Metropolis 算法的规则来接受使用 config_tmp[k,:] = config[k,:] + Delta*(np.random.random_sample((1,3))-.5) 提取的提议的移动。

我做了一些尝试来检查代码卡在哪里,我发现函数 ener (也是因为函数 dist )非常慢:它需要像 ~0.02s 这样的东西来计算配置的能量,这意味着周围的东西~6000s 运行完整的模拟(60 个粒子,5000 个建议的移动)。

其外部只是计算 Delta 不同值的结果。

使用 TIME_MC=60 运行此代码可以让您了解此代码 ( ~218s ) 有多慢,如果用 C 实现,只需几秒钟。我读过一些有关如何加速 Python 代码的其他问题,但我不能了解如何在此处执行此操作。

编辑:

我现在几乎可以肯定问题出在函数 dist 中,因为仅计算两个 3D 向量之间的 PBC 距离就需要 ~0.0012s 左右的时间,当您计算 5000*60 次时,这会带来疯狂的长时间。

最佳答案

请注意,这是对原始问题的评论的部分答案。

下面是一个示例,说明“展开”numpy 函数在替换为更直接的距离计算时如何提高性能。请注意,这尚未被验证为等效,特别是在舍入方面。我认为这个原则仍然适用。

import random
import time
import numpy as np

L = 100
inv_L = 0.01
vec_length = 10
repetitions = 100000

def dist_np(A, B):
d = A - B
d -= L*np.around(d/L)
return np.sqrt(np.sum(d**2))

def dist_direct(A, B):
sum = 0
for i in range(0, len(A)):
diff = (A[0,i] - B[0,i])
diff -= L * int(diff * inv_L)
sum += diff * diff
return np.sqrt(sum)

vec1 = np.zeros((1,vec_length))
vec2 = np.zeros((1,vec_length))

for i in range(0, vec_length):
vec1[0,i] = random.random()
vec2[0,i] = random.random()

print("with numpy method:")
start = time.time()
for i in range(0, repetitions):
dist_np(vec1, vec2)
print("done in {}".format(time.time() - start))

print("with direct method:")
start = time.time()
for i in range(0, repetitions):
dist_direct(vec1, vec2)
print("done in {}".format(time.time() - start))

输出:

with numpy method:
done in 6.332799911499023
with direct method:
done in 1.0938000679016113

研究平均向量长度和重复次数,看看最佳位置在哪里。我预计当改变这些元参数时,性能增益并不是恒定的。

关于python - Python 中的 Monte Carlo 和 Metropolis 算法非常慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55901584/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com