- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在开发一个类来创建各种对称 AE。我现在把这个类移植到TF 2.0,比我想象的要复杂。但是,我使用层和模型的子类来实现此目的。因此,我想将多个 keras 层分组为一个 keras 层。但如果我想写这样的东西:
def __init__(self, name, keras_layer, **kwargs):
self.keras_layer = tf.keras.layer.Conv2D
super(CoderLayer, self).__init__(name=name, **kwargs)
我收到以下错误,因为 tf 想使用这个未初始化的层:
TypeError: _method_wrapper() missing 1 required positional argument: 'self'
我也尝试将其包装在列表中,但它也不起作用。
编辑
这是一个工作的最小示例和完整的回溯:
import tensorflow as tf
print(tf.__version__) # 2.0.0-alpha0
class CoderLayer(tf.keras.layers.Layer):
def __init__(self, name, keras_layer):
self.keras_layer = keras_layer
self.out = keras_layer(12, [3, 3])
super(CoderLayer, self).__init__(name=name)
def call(self, inputs):
return self.out(inputs)
inputs = tf.keras.Input(shape=(200, 200, 3), batch_size=12)
layer = CoderLayer("minimal_example", tf.keras.layers.Conv2D)
layer(inputs)
回溯:
Traceback (most recent call last):
File "..\baseline_cae.py", line 24, in <module>
layer(inputs)
File "..\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 581, in __call__
self._clear_losses()
File "..\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\training\tracking\base.py", line 456, in _method_wrapper
result = method(self, *args, **kwargs)
File "..\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 818, in _clear_losses
layer._clear_losses()
TypeError: _method_wrapper() missing 1 required positional argument: 'self'
最佳答案
问题在于将未实例化的类设置为 tf.keras.layers.Layer 的子类中的属性。如果删除以下行
self.keras_layer = keras_layer
代码可以工作:
import tensorflow as tf
class CoderLayer(tf.keras.layers.Layer):
def __init__(self, name, keras_layer):
super(CoderLayer, self).__init__(name=name)
self.out = keras_layer(12, [3, 3])
def call(self, inputs):
return self.out(inputs)
inputs = tf.keras.Input(shape=(200, 200, 3), batch_size=12)
layer = CoderLayer("minimal_example", tf.keras.layers.Conv2D)
print(layer(inputs))
# Tensor("minimal_example_3/conv2d_12/BiasAdd:0", shape=(12, 198, 198, 12), dtype=float32)
这可能是一个错误。 This是一个已经提出的类似问题(如果您将未实例化的类放入列表中并尝试 __setattr__()
您将得到相同的异常)。
如果您想使用多个图层,这可能是一种解决方法:
class CoderLayer(tf.keras.layers.Layer):
def __init__(self, name, layername):
super(CoderLayer, self).__init__(name=name)
self.layer = layername
self.out = tf.keras.layers.__dict__[layername](1, 2)
def call(self, inputs):
return self.out(inputs)
inputs = tf.random.normal([1, 3, 3, 1])
layer = CoderLayer("mylayer", 'Conv2D')
layer(inputs).numpy()
关于python - 如何将 tf.keras.layers.layer 分配给一个类而不初始化它?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55965135/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!