gpt4 book ai didi

python - 计算编辑距离

转载 作者:行者123 更新时间:2023-12-01 07:53:00 35 4
gpt4 key购买 nike

我编写了一个函数来计算两个给定字符串之间的编辑距离。但是,它似乎无法正常工作。替换成本 = 2,插入成本 = 1,删除成本 = 1

def MyLevenshtein(String1, String2):
if len(String1) and len(String2) != 0:
rows = len(String1) + 1
columns = len(String2) + 1
distance = [[0 for x in range(columns)] for x in range(rows)]
for i in range(1, rows):
distance[i][0] = i
for i in range(1, columns):
distance[0][i] = i
for column in range(1, columns):
for row in range(1, rows):
if String1[row - 1] == String2[column - 1]:
cost = 0
else:
cost = 2
distance[row][column] = min(distance[row - 1][column] + 1, # deletion
distance[row][column - 1] + 1, # insertion
distance[row - 1][column - 1] + cost) #substitution
Distance = distance[row][column]
return Distance

例如,当我使用字符串“hamchenoonan”和“hamchenin”调用该函数时,会返回 5,尽管它应该返回 7。

最佳答案

在这里我看到了很多实现: https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python

所以我只是询问所有开箱即用的人对成本的理解。

import numpy as np

def Mylevenshtein(String1, String2):
if len(String1) and len(String2) != 0:
rows = len(String1) + 1
columns = len(String2) + 1
distance = [[0 for x in range(columns)] for x in range(rows)]
for i in range(1, rows):
distance[i][0] = i
for i in range(1, columns):
distance[0][i] = i
for column in range(1, columns):
for row in range(1, rows):
if String1[row - 1] == String2[column - 1]:
cost = 0
else:
cost = 2
distance[row][column] = min(distance[row - 1][column] + 1, # deletion
distance[row][column - 1] + 1, # insertion
distance[row - 1][column - 1] + cost) #substitution
Distance = distance[row][column]
return Distance


def levenshtein1(s1, s2):
if len(s1) < len(s2):
return levenshtein1(s2, s1)

# len(s1) >= len(s2)
if len(s2) == 0:
return len(s1)

previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[
j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer
deletions = current_row[j] + 1 # than s2
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row

return previous_row[-1]


def levenshtein2(a, b):
if not a: return len(b)
if not b: return len(a)
return min(levenshtein2(a[1:], b[1:])+(a[0] != b[0]), levenshtein2(a[1:], b)+1, levenshtein2(a, b[1:])+1)


def levenshtein3(s,t):
s = ' ' + s
t = ' ' + t
d = {}
S = len(s)
T = len(t)
for i in range(S):
d[i, 0] = i
for j in range (T):
d[0, j] = j
for j in range(1,T):
for i in range(1,S):
if s[i] == t[j]:
d[i, j] = d[i-1, j-1]
else:
d[i, j] = min(d[i-1, j], d[i, j-1], d[i-1, j-1]) + 1
return d[S-1, T-1]




def levenshtein5(source, target):
if len(source) < len(target):
return levenshtein5(target, source)

# So now we have len(source) >= len(target).
if len(target) == 0:
return len(source)

# We call tuple() to force strings to be used as sequences
# ('c', 'a', 't', 's') - numpy uses them as values by default.
source = np.array(tuple(source))
target = np.array(tuple(target))

# We use a dynamic programming algorithm, but with the
# added optimization that we only need the last two rows
# of the matrix.
previous_row = np.arange(target.size + 1)
for s in source:
# Insertion (target grows longer than source):
current_row = previous_row + 1

# Substitution or matching:
# Target and source items are aligned, and either
# are different (cost of 1), or are the same (cost of 0).
current_row[1:] = np.minimum(
current_row[1:],
np.add(previous_row[:-1], target != s))

# Deletion (target grows shorter than source):
current_row[1:] = np.minimum(
current_row[1:],
current_row[0:-1] + 1)

previous_row = current_row

return previous_row[-1]

def levenshtein6(s, t):
''' From Wikipedia article; Iterative with two matrix rows. '''
if s == t:
return 0
elif len(s) == 0:
return len(t)
elif len(t) == 0:
return len(s)
v0 = [None] * (len(t) + 1)
v1 = [None] * (len(t) + 1)
for i in range(len(v0)):
v0[i] = i
for i in range(len(s)):
v1[0] = i + 1
for j in range(len(t)):
cost = 0 if s[i] == t[j] else 1
v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost)
for j in range(len(v0)):
v0[j] = v1[j]

return v1[len(t)]


for implementation_variant in [g for g in globals() if "leven" in g]:
print("Try variant %s" % implementation_variant)
for a, b in [("hamchenoonan", "hamchenin"),
("Tier", "Tor")]:
print(" -Distance of %s and %s is %i" % (a, b, globals()[implementation_variant](a, b)))

输出显示:

Try variant Mylevenshtein
-Distance of hamchenoonan and hamchenin is 5
-Distance of Tier and Tor is 3
Try variant levenshtein1
-Distance of hamchenoonan and hamchenin is 4
-Distance of Tier and Tor is 2
Try variant levenshtein2
-Distance of hamchenoonan and hamchenin is 4
-Distance of Tier and Tor is 2
Try variant levenshtein3
-Distance of hamchenoonan and hamchenin is 4
-Distance of Tier and Tor is 2
Try variant levenshtein5
-Distance of hamchenoonan and hamchenin is 4
-Distance of Tier and Tor is 2
Try variant levenshtein6
-Distance of hamchenoonan and hamchenin is 4
-Distance of Tier and Tor is 2

德语维基百科中提到了 Tier 和 Tor 的距离,只是作为第二次验证。所以民主的答案似乎是 4。

关于python - 计算编辑距离,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56101062/

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com