gpt4 book ai didi

python - 使用 Python 优化 XML 解析为 CSV

转载 作者:行者123 更新时间:2023-12-01 07:46:24 25 4
gpt4 key购买 nike

我有大约 10,000 个具有类似结构的 XML 文件,我希望将它们转换为单个 CSV 文件。每个 XML 文件如下所示:

<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns7:GetStopMonitoringServiceResponse xmlns:ns3="http://www.siri.org.uk/siri" xmlns:ns4="http://www.ifopt.org.uk/acsb" xmlns:ns5="http://www.ifopt.org.uk/ifopt" xmlns:ns6="http://datex2.eu/schema/1_0/1_0" xmlns:ns7="http://new.webservice.namespace">
<Answer>
<ns3:ResponseTimestamp>2019-03-31T09:00:52.912+03:00</ns3:ResponseTimestamp>
<ns3:ProducerRef>ISR Siri Server (141.10)</ns3:ProducerRef>
<ns3:ResponseMessageIdentifier>276480603</ns3:ResponseMessageIdentifier>
<ns3:RequestMessageRef>0100700:1351669188:4684</ns3:RequestMessageRef>
<ns3:Status>true</ns3:Status>
<ns3:StopMonitoringDelivery version="IL2.71">
<ns3:ResponseTimestamp>2019-03-31T09:00:52.912+03:00</ns3:ResponseTimestamp>
<ns3:Status>true</ns3:Status>
<ns3:MonitoredStopVisit>
<ns3:RecordedAtTime>2019-03-31T09:00:52.000+03:00</ns3:RecordedAtTime>
<ns3:ItemIdentifier>-881202701</ns3:ItemIdentifier>
<ns3:MonitoringRef>20902</ns3:MonitoringRef>
<ns3:MonitoredVehicleJourney>
<ns3:LineRef>23925</ns3:LineRef>
<ns3:DirectionRef>2</ns3:DirectionRef>
<ns3:FramedVehicleJourneyRef>
<ns3:DataFrameRef>2019-03-31</ns3:DataFrameRef>
<ns3:DatedVehicleJourneyRef>36962685</ns3:DatedVehicleJourneyRef>
</ns3:FramedVehicleJourneyRef>
<ns3:PublishedLineName>15</ns3:PublishedLineName>
<ns3:OperatorRef>15</ns3:OperatorRef>
<ns3:DestinationRef>26020</ns3:DestinationRef>
<ns3:OriginAimedDepartureTime>2019-03-31T08:35:00.000+03:00</ns3:OriginAimedDepartureTime>
<ns3:VehicleLocation>
<ns3:Longitude>34.78000259399414</ns3:Longitude>
<ns3:Latitude>32.042293548583984</ns3:Latitude>
</ns3:VehicleLocation>
<ns3:VehicleRef>37629301</ns3:VehicleRef>
<ns3:MonitoredCall>
<ns3:StopPointRef>20902</ns3:StopPointRef>
<ns3:ExpectedArrivalTime>2019-03-31T09:03:00.000+03:00</ns3:ExpectedArrivalTime>
</ns3:MonitoredCall>
</ns3:MonitoredVehicleJourney>
</ns3:MonitoredStopVisit>
</ns3:StopMonitoringDelivery>
</Answer>
</ns7:GetStopMonitoringServiceResponse>
</S:Body>
</S:Envelope>

上面的示例显示了一个 MonitoredStopVisit 嵌套标记,但每个 XML 大约有 4,000 个。完整的 XML 作为示例可以找到 here .

我想将所有 10K 文件转换为一个 CSV,其中每条记录对应一个 MonitoredStopVisit 标记,因此 CSV 应如下所示: generated CSV

目前这是我的架构:

  • 将 10K 文件分成 8 个 block (根据我的 PC 内核)。
  • 每个子流程都会迭代其 xml 文件并对象化 xml。
  • 然后迭代该对象,并针对每个元素使用数组的条件来排除/包含数据。
  • 当标记为/ns3:MonitoredStopVisit 时,该数组将作为一个序列附加到 pandas 数据帧。
  • 完成所有子流程后,数据帧将合并并保存为 CSV。

这是 xml 到 df 的代码:

def xml_to_df(xml_file):
from lxml import objectify
xml_content = xml_file.read()
obj = objectify.fromstring(xml_content)
df_cols=[
'RecordedAtTime',
'MonitoringRef',
'LineRef',
'DirectionRef',
'PublishedLineName',
'OperatorRef',
'DestinationRef',
'OriginAimedDepartureTime',
'Longitude',
'Latitude',
'VehicleRef',
'StopPointRef',
'ExpectedArrivalTime',
'AimedArrivalTime'
]
tempdf = pd.DataFrame(columns=df_cols)
arr_of_vals = [""] * 14

for i in obj.getiterator():
if "MonitoredStopVisit" in i.tag or "Status" in i.tag and "false" in str(i):
if arr_of_vals[0] != "" and (arr_of_vals[8] and arr_of_vals[9]):
s = pd.Series(arr_of_vals, index=df_cols)
if tempdf[(tempdf==s).all(axis=1)].empty:
tempdf = tempdf.append(s, ignore_index=True)
arr_of_vals = [""] * 14
elif "RecordedAtTime" in i.tag:
arr_of_vals[0] = str(i)
elif "MonitoringRef" in i.tag:
arr_of_vals[1] = str(i)
elif "LineRef" in i.tag:
arr_of_vals[2] = str(i)
elif "DestinationRef" in i.tag:
arr_of_vals[6] = str(i)
elif "OriginAimedDepartureTime" in i.tag:
arr_of_vals[7] = str(i)
elif "Longitude" in i.tag:
if str(i) == "345353":
print("Lon: " + str(i))
arr_of_vals[8] = str(i)
elif "Latitude" in i.tag:
arr_of_vals[9] = str(i)
elif "VehicleRef" in i.tag:
arr_of_vals[10] = str(i)
elif "ExpectedArrivalTime" in i.tag:
arr_of_vals[12] = str(i)

if arr_of_vals[0] != "" and (arr_of_vals[8] and arr_of_vals[9]):
s = pd.Series(arr_of_vals, index=df_cols)
if tempdf[(tempdf == s).all(axis=1)].empty:
tempdf = tempdf.append(s, ignore_index=True)
return tempdf

问题是,对于 10K 文件,使用 8 个子处理器大约需要 10 个小时。在检查 CPU/Mem 使用情况时,我可以看到没有充分利用。

知道如何改进吗?我的下一步是线程化,但也许还有其他适用的方法。请注意,记录的顺序并不重要 - 我可以稍后对其进行排序。

最佳答案

这是我使用 pandas 的解决方案:

每个5Mb文件的计算时间约为0.4s

import xml.etree.ElementTree as ET
import re
import pandas as pd
import os



def collect_data(xml_file):
# create xml object
root = ET.parse(xml_file).getroot()

# collect raw data
out_data = []
for element in root.iter():
# get tag name
tag = re.sub('{.*?}', '', element.tag)
# add break segment element
if tag == 'RecordedAtTime':
out_data.append('break')

if tag in tag_list:
out_data.append((tag, element.text))

# get break indexes
break_index = [i for i, x in enumerate(out_data) if x == 'break']

# break list into parts
list_data = []
for i in range(len(break_index) - 1):
list_data.append(out_data[break_index[i]:break_index[i + 1]])

# check for each value in data
final_data = []
for item in list_data:
# delete bleak element ad convert list into dictionary
del item[item.index('break')]
data_dictionary = dict(item)

if 'RecordedAtTime' in data_dictionary.keys():
recorded_at_time = data_dictionary.get('RecordedAtTime')
else:
recorded_at_time = ''

if 'MonitoringRef' in data_dictionary.keys():
monitoring_ref = data_dictionary.get('MonitoringRef')
else:
monitoring_ref = ''

if 'LineRef' in data_dictionary.keys():
line_ref = data_dictionary.get('LineRef')
else:
line_ref = ''

if 'DirectionRef' in data_dictionary.keys():
direction_ref = data_dictionary.get('DirectionReff')
else:
direction_ref = ''

if 'PublishedLineName' in data_dictionary.keys():
published_line_name = data_dictionary.get('PublishedLineName')
else:
published_line_name = ''

if 'OperatorRef' in data_dictionary.keys():
operator_ref = data_dictionary.get('OperatorRef')
else:
operator_ref = ''

if 'DestinationRef' in data_dictionary.keys():
destination_ref = data_dictionary.get('DestinationRef')
else:
destination_ref = ''

if 'OriginAimedDepartureTime' in data_dictionary.keys():
origin_aimed_departure_time = data_dictionary.get('OriginAimedDepartureTime')
else:
origin_aimed_departure_time = ''

if 'Longitude' in data_dictionary.keys():
longitude = data_dictionary.get('Longitude')
else:
longitude = ''

if 'Latitude' in data_dictionary.keys():
latitude = data_dictionary.get('Latitude')
else:
latitude = ''

if 'VehicleRef' in data_dictionary.keys():
vehicle_ref = data_dictionary.get('VehicleRef')
else:
vehicle_ref = ''

if 'StopPointRef' in data_dictionary.keys():
stop_point_ref = data_dictionary.get('StopPointRef')
else:
stop_point_ref = ''

if 'ExpectedArrivalTime' in data_dictionary.keys():
expected_arrival_time = data_dictionary.get('ExpectedArrivalTime')
else:
expected_arrival_time = ''

if 'AimedArrivalTime' in data_dictionary.keys():
aimed_arrival_time = data_dictionary.get('AimedArrivalTime')
else:
aimed_arrival_time = ''

final_data.append((recorded_at_time, monitoring_ref, line_ref, direction_ref, published_line_name, operator_ref,
destination_ref, origin_aimed_departure_time, longitude, latitude, vehicle_ref,
stop_point_ref,
expected_arrival_time, aimed_arrival_time))

return final_data


# setup tags list for checking
tag_list = ['RecordedAtTime', 'MonitoringRef', 'LineRef', 'DirectionRef', 'PublishedLineName', 'OperatorRef',
'DestinationRef', 'OriginAimedDepartureTime', 'Longitude', 'Latitude', 'VehicleRef', 'StopPointRef',
'ExpectedArrivalTime', 'AimedArrivalTime']

# collect data from each file
save_data = []
for file_name in os.listdir(os.getcwd()):
if file_name.endswith('.xml'):
save_data.append(collect_data(file_name))
else:
pass

# merge list of lists
flat_list = []
for sublist in save_data:
for item in sublist:
flat_list.append(item)

# load data into data frame
data = pd.DataFrame(flat_list, columns=tag_list)

# save data to file
data.to_csv('data.csv', index=False)

关于python - 使用 Python 优化 XML 解析为 CSV,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56443021/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com