- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有大约 10,000 个具有类似结构的 XML 文件,我希望将它们转换为单个 CSV 文件。每个 XML 文件如下所示:
<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns7:GetStopMonitoringServiceResponse xmlns:ns3="http://www.siri.org.uk/siri" xmlns:ns4="http://www.ifopt.org.uk/acsb" xmlns:ns5="http://www.ifopt.org.uk/ifopt" xmlns:ns6="http://datex2.eu/schema/1_0/1_0" xmlns:ns7="http://new.webservice.namespace">
<Answer>
<ns3:ResponseTimestamp>2019-03-31T09:00:52.912+03:00</ns3:ResponseTimestamp>
<ns3:ProducerRef>ISR Siri Server (141.10)</ns3:ProducerRef>
<ns3:ResponseMessageIdentifier>276480603</ns3:ResponseMessageIdentifier>
<ns3:RequestMessageRef>0100700:1351669188:4684</ns3:RequestMessageRef>
<ns3:Status>true</ns3:Status>
<ns3:StopMonitoringDelivery version="IL2.71">
<ns3:ResponseTimestamp>2019-03-31T09:00:52.912+03:00</ns3:ResponseTimestamp>
<ns3:Status>true</ns3:Status>
<ns3:MonitoredStopVisit>
<ns3:RecordedAtTime>2019-03-31T09:00:52.000+03:00</ns3:RecordedAtTime>
<ns3:ItemIdentifier>-881202701</ns3:ItemIdentifier>
<ns3:MonitoringRef>20902</ns3:MonitoringRef>
<ns3:MonitoredVehicleJourney>
<ns3:LineRef>23925</ns3:LineRef>
<ns3:DirectionRef>2</ns3:DirectionRef>
<ns3:FramedVehicleJourneyRef>
<ns3:DataFrameRef>2019-03-31</ns3:DataFrameRef>
<ns3:DatedVehicleJourneyRef>36962685</ns3:DatedVehicleJourneyRef>
</ns3:FramedVehicleJourneyRef>
<ns3:PublishedLineName>15</ns3:PublishedLineName>
<ns3:OperatorRef>15</ns3:OperatorRef>
<ns3:DestinationRef>26020</ns3:DestinationRef>
<ns3:OriginAimedDepartureTime>2019-03-31T08:35:00.000+03:00</ns3:OriginAimedDepartureTime>
<ns3:VehicleLocation>
<ns3:Longitude>34.78000259399414</ns3:Longitude>
<ns3:Latitude>32.042293548583984</ns3:Latitude>
</ns3:VehicleLocation>
<ns3:VehicleRef>37629301</ns3:VehicleRef>
<ns3:MonitoredCall>
<ns3:StopPointRef>20902</ns3:StopPointRef>
<ns3:ExpectedArrivalTime>2019-03-31T09:03:00.000+03:00</ns3:ExpectedArrivalTime>
</ns3:MonitoredCall>
</ns3:MonitoredVehicleJourney>
</ns3:MonitoredStopVisit>
</ns3:StopMonitoringDelivery>
</Answer>
</ns7:GetStopMonitoringServiceResponse>
</S:Body>
</S:Envelope>
上面的示例显示了一个 MonitoredStopVisit 嵌套标记,但每个 XML 大约有 4,000 个。完整的 XML 作为示例可以找到 here .
我想将所有 10K 文件转换为一个 CSV,其中每条记录对应一个 MonitoredStopVisit 标记,因此 CSV 应如下所示:
目前这是我的架构:
这是 xml 到 df 的代码:
def xml_to_df(xml_file):
from lxml import objectify
xml_content = xml_file.read()
obj = objectify.fromstring(xml_content)
df_cols=[
'RecordedAtTime',
'MonitoringRef',
'LineRef',
'DirectionRef',
'PublishedLineName',
'OperatorRef',
'DestinationRef',
'OriginAimedDepartureTime',
'Longitude',
'Latitude',
'VehicleRef',
'StopPointRef',
'ExpectedArrivalTime',
'AimedArrivalTime'
]
tempdf = pd.DataFrame(columns=df_cols)
arr_of_vals = [""] * 14
for i in obj.getiterator():
if "MonitoredStopVisit" in i.tag or "Status" in i.tag and "false" in str(i):
if arr_of_vals[0] != "" and (arr_of_vals[8] and arr_of_vals[9]):
s = pd.Series(arr_of_vals, index=df_cols)
if tempdf[(tempdf==s).all(axis=1)].empty:
tempdf = tempdf.append(s, ignore_index=True)
arr_of_vals = [""] * 14
elif "RecordedAtTime" in i.tag:
arr_of_vals[0] = str(i)
elif "MonitoringRef" in i.tag:
arr_of_vals[1] = str(i)
elif "LineRef" in i.tag:
arr_of_vals[2] = str(i)
elif "DestinationRef" in i.tag:
arr_of_vals[6] = str(i)
elif "OriginAimedDepartureTime" in i.tag:
arr_of_vals[7] = str(i)
elif "Longitude" in i.tag:
if str(i) == "345353":
print("Lon: " + str(i))
arr_of_vals[8] = str(i)
elif "Latitude" in i.tag:
arr_of_vals[9] = str(i)
elif "VehicleRef" in i.tag:
arr_of_vals[10] = str(i)
elif "ExpectedArrivalTime" in i.tag:
arr_of_vals[12] = str(i)
if arr_of_vals[0] != "" and (arr_of_vals[8] and arr_of_vals[9]):
s = pd.Series(arr_of_vals, index=df_cols)
if tempdf[(tempdf == s).all(axis=1)].empty:
tempdf = tempdf.append(s, ignore_index=True)
return tempdf
问题是,对于 10K 文件,使用 8 个子处理器大约需要 10 个小时。在检查 CPU/Mem 使用情况时,我可以看到没有充分利用。
知道如何改进吗?我的下一步是线程化,但也许还有其他适用的方法。请注意,记录的顺序并不重要 - 我可以稍后对其进行排序。
最佳答案
这是我使用 pandas 的解决方案:
每个5Mb文件的计算时间约为0.4s
import xml.etree.ElementTree as ET
import re
import pandas as pd
import os
def collect_data(xml_file):
# create xml object
root = ET.parse(xml_file).getroot()
# collect raw data
out_data = []
for element in root.iter():
# get tag name
tag = re.sub('{.*?}', '', element.tag)
# add break segment element
if tag == 'RecordedAtTime':
out_data.append('break')
if tag in tag_list:
out_data.append((tag, element.text))
# get break indexes
break_index = [i for i, x in enumerate(out_data) if x == 'break']
# break list into parts
list_data = []
for i in range(len(break_index) - 1):
list_data.append(out_data[break_index[i]:break_index[i + 1]])
# check for each value in data
final_data = []
for item in list_data:
# delete bleak element ad convert list into dictionary
del item[item.index('break')]
data_dictionary = dict(item)
if 'RecordedAtTime' in data_dictionary.keys():
recorded_at_time = data_dictionary.get('RecordedAtTime')
else:
recorded_at_time = ''
if 'MonitoringRef' in data_dictionary.keys():
monitoring_ref = data_dictionary.get('MonitoringRef')
else:
monitoring_ref = ''
if 'LineRef' in data_dictionary.keys():
line_ref = data_dictionary.get('LineRef')
else:
line_ref = ''
if 'DirectionRef' in data_dictionary.keys():
direction_ref = data_dictionary.get('DirectionReff')
else:
direction_ref = ''
if 'PublishedLineName' in data_dictionary.keys():
published_line_name = data_dictionary.get('PublishedLineName')
else:
published_line_name = ''
if 'OperatorRef' in data_dictionary.keys():
operator_ref = data_dictionary.get('OperatorRef')
else:
operator_ref = ''
if 'DestinationRef' in data_dictionary.keys():
destination_ref = data_dictionary.get('DestinationRef')
else:
destination_ref = ''
if 'OriginAimedDepartureTime' in data_dictionary.keys():
origin_aimed_departure_time = data_dictionary.get('OriginAimedDepartureTime')
else:
origin_aimed_departure_time = ''
if 'Longitude' in data_dictionary.keys():
longitude = data_dictionary.get('Longitude')
else:
longitude = ''
if 'Latitude' in data_dictionary.keys():
latitude = data_dictionary.get('Latitude')
else:
latitude = ''
if 'VehicleRef' in data_dictionary.keys():
vehicle_ref = data_dictionary.get('VehicleRef')
else:
vehicle_ref = ''
if 'StopPointRef' in data_dictionary.keys():
stop_point_ref = data_dictionary.get('StopPointRef')
else:
stop_point_ref = ''
if 'ExpectedArrivalTime' in data_dictionary.keys():
expected_arrival_time = data_dictionary.get('ExpectedArrivalTime')
else:
expected_arrival_time = ''
if 'AimedArrivalTime' in data_dictionary.keys():
aimed_arrival_time = data_dictionary.get('AimedArrivalTime')
else:
aimed_arrival_time = ''
final_data.append((recorded_at_time, monitoring_ref, line_ref, direction_ref, published_line_name, operator_ref,
destination_ref, origin_aimed_departure_time, longitude, latitude, vehicle_ref,
stop_point_ref,
expected_arrival_time, aimed_arrival_time))
return final_data
# setup tags list for checking
tag_list = ['RecordedAtTime', 'MonitoringRef', 'LineRef', 'DirectionRef', 'PublishedLineName', 'OperatorRef',
'DestinationRef', 'OriginAimedDepartureTime', 'Longitude', 'Latitude', 'VehicleRef', 'StopPointRef',
'ExpectedArrivalTime', 'AimedArrivalTime']
# collect data from each file
save_data = []
for file_name in os.listdir(os.getcwd()):
if file_name.endswith('.xml'):
save_data.append(collect_data(file_name))
else:
pass
# merge list of lists
flat_list = []
for sublist in save_data:
for item in sublist:
flat_list.append(item)
# load data into data frame
data = pd.DataFrame(flat_list, columns=tag_list)
# save data to file
data.to_csv('data.csv', index=False)
关于python - 使用 Python 优化 XML 解析为 CSV,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56443021/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!