- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试在顺序 Keras 模型上调用 model.fit()
,但收到此错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-30-3fc420144082> in <module>
15 return model
16
---> 17 trained_model = build_model()
<ipython-input-30-3fc420144082> in build_model()
10 # fit model
11 es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=1)
---> 12 model.fit(train_data[0], train_data[1], epochs=100,verbose=1)
13 # validation_data = (val_data[0], val_data[1])
14 print(model.summary())
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, max_queue_size, workers, use_multiprocessing, **kwargs)
878 initial_epoch=initial_epoch,
879 steps_per_epoch=steps_per_epoch,
--> 880 validation_steps=validation_steps)
881
882 def evaluate(self,
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, mode, validation_in_fit, **kwargs)
327
328 # Get outputs.
--> 329 batch_outs = f(ins_batch)
330 if not isinstance(batch_outs, list):
331 batch_outs = [batch_outs]
~/.local/lib/python3.6/site-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
3074
3075 fetched = self._callable_fn(*array_vals,
-> 3076 run_metadata=self.run_metadata)
3077 self._call_fetch_callbacks(fetched[-len(self._fetches):])
3078 return nest.pack_sequence_as(self._outputs_structure,
~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/.local/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: data[0].shape = [3] does not start with indices[0].shape = [2]
[[{{node training_40/Adam/gradients/loss_21/dense_21_loss/MeanSquaredError/Mean_grad/DynamicStitch}}]]
我创建了一组训练点,每个 1 x 3,由 train_data[0] 调用,以及一组训练标签,每个 1x1 由 train_data[1] 调用。这是我用来构建模型的代码:
def build_model():
'''
Function to build a LSTM RNN model that takes in quantitiy, converted week; outputs predicted price
'''
# define model
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(128, activation='relu', input_shape=(num_steps,num_features*input_size)))
model.add(tf.keras.layers.Dense(input_size))
model.compile(optimizer='adam', loss='mse')
# fit model
es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=1)
model.fit(train_data[0], train_data[1], epochs=100,verbose=1)
# validation_data = (val_data[0], val_data[1])
print(model.summary())
return model
trained_model = build_model()
我不确定为什么,但是当我调用 model.fit(train_data, epochs = 100)
并且不将其分解为点和标签时,一切正常。任何见解将不胜感激!
最佳答案
根据tensorflow的tf.keras.models.Model文档,这是有意义的:
https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#fit
fit(x=None, y=None, batch_size=None, epochs=1, ...)
它精确:
y: Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, dataset iterator, generator, or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from x).
你的lstm是一个顺序模型,我猜你准备了train_data
类型为keras.utils.Sequence?
另请注意您的 TensorFlow 版本,上面的文档链接适用于 r1.13
编辑:
尝试以这种方式准备数据集:
features_type = tf.float32
target_type = tf.int32
train_dataset = tf.data.Dataset.from_tensor_slices(
tf.cast(train_data[0].values, features_type),
tf.cast(train_data[1].values, target_type)
)
model.fit(train_dataset, epochs=100, verbose=1)
确保根据您当前要解决的问题调整 features_type(所有功能都转换为 float32)和 target_type(用于分类的 int32)。
关于python - Keras InvalidArgumentError 与 Model.Fit(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56604825/
我对 mongoosejs 中模型的使用感到有些困惑。 可以通过这些方式使用 mongoose 创建模型 使用 Mongoose var mongoose = require('mongoose');
我正在看 from django.db import models class Publisher(models.Model): name = models.CharField(max_len
我有自己的 html 帮助器扩展,我用这种方式 model.Reason_ID, Register.PurchaseReason) %> 这样声明的。 public static MvcHtmlS
假设模型原本是存储在CPU上的,然后我想把它移到GPU0上,那么我可以这样做: device = torch.device('cuda:0') model = model.to(device) # o
我过去读过一些关于模型的 MVC 建议,指出不应为域和 View 重用相同的模型对象;但我找不到任何人愿意讨论为什么这很糟糕。 我认为创建两个单独的模型 - 一个用于域,一个用于 View - 然后在
我正在使用pytorch构建一个像VGG16这样的简单模型,并且我已经重载了函数forward在我的模型中。 我发现每个人都倾向于使用 model(input)得到输出而不是 model.forwar
tf.keras API 中的 models 是否多余?对于某些情况,即使不使用 models,代码也能正常运行。 keras.models.sequential 和 keras.sequential
当我尝试使用 docker 镜像运行 docker 容器时遇到问题:tensorflow/serving。 我运行命令: docker run --name=tf_serving -it tensor
我有一个模型,我用管道注册了它: register_step = PythonScriptStep(name = "Register Model",
如果 View 需要访问模型中的数据,您是否认为 Controller 应: a)将模型传递给 View b)将模型的数据传递给 View c)都不;这不应该是 Controller 所关心的。让 V
我正在寻找一个可以在模型中定义的字段,该字段本质上是一个列表,因为它将用于存储多个字符串值。显然CharField不能使用。 最佳答案 您正在描述一种多对一的关系。这应该通过一个额外的 Model 进
我最近了解了 Django 中的模型继承。我使用很棒的包 django-model-utils 取得了巨大的成功。我继承自 TimeStampedModel 和 SoftDeletableModel。
我正在使用基于 resnet50 的双输出模型进行项目。一个输出用于回归任务,第二个输出用于分类任务。 我的主要问题是关于模型评估。在训练期间,我在验证集的两个输出上都取得了不错的结果: - 综合损失
我是keras的新手。现在,我将使用我使用 model.fit_generator 训练的模型来预测测试图像组。我可以使用 model.predict 吗?不确定如何使用model.predict_g
在 MVC 应用程序中,我加入了多个表并将其从 Controller 返回到 View,如下所示: | EmployeeID | ControlID | DoorAddress | DoorID |
我在使用 sails-cassandra 连接系统的 Sails 中有一个 Data 模型。数据。 Data.count({...}).exec() 返回 1,但 Data.find({...}).e
我正在使用 PrimeFaces dataTable 开发一个 jsf 页面来显示用户列表。用户存储在 Model.User 类的对象中。
我正在关注https://www.tensorflow.org/tutorials/keras/basic_classification解决 Kaggle 挑战。 但是,我不明白应该将什么样的数据输入
我是这个领域的新手。那么,你们能帮忙如何为 CNN 创建 .config 文件吗? 传递有关如何执行此操作的文档或教程将对我有很大帮助。谢谢大家。 最佳答案 这个问题对我来说没有多大意义,因为 .co
我是“物理系统建模”主题的新手。我阅读了一些基础文献,并在 Modelica 和 Simulink/Simscape 中做了一些教程。我想问你,如果我对以下内容理解正确: 符号操作是将微分代数方程组(
我是一名优秀的程序员,十分优秀!