- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个特殊的情况,即网络相对较小,出于收敛和泛化的考虑,我应保持较小的批次大小(例如256),这会导致每个时期处理数百个批次。
不幸的是,在这种情况下,批次,装载和损失计算成为瓶颈(就像timeline
工具告诉我的那样)。
在TensorFlow中,您可以编写如下代码以将数据加载到GPU:
with tf.device('/gpu:0'):
train_data = tf.constant(train_data_numpy)
但是,如果我将
train_data
传递给Keras
Model.predict
或
Model.fit
函数,则会出现以下错误:
keras/engine/training.pyc in predict(self, x, batch_size, verbose)
1515 f = self.predict_function
1516 return self._predict_loop(f, ins,
-> 1517 batch_size=batch_size, verbose=verbose)
1518
1519 def train_on_batch(self, x, y,
keras/engine/training.pyc in _predict_loop(self, f, ins, batch_size, verbose)
1129 if verbose == 1:
1130 progbar = Progbar(target=samples)
-> 1131 batches = _make_batches(samples, batch_size)
1132 index_array = np.arange(samples)
1133 for batch_index, (batch_start, batch_end) in enumerate(batches):
keras/engine/training.pyc in _make_batches(size, batch_size)
368 A list of tuples of array indices.
369 """
--> 370 num_batches = int(np.ceil(size / float(batch_size)))
371 return [(i * batch_size, min(size, (i + 1) * batch_size))
372 for i in range(0, num_batches)]
AttributeError: 'Dimension' object has no attribute 'ceil'
这是有道理的,因为Keras期望只提供类似NumPy的数组和此类列表。
keras/engine/training.pyc in predict(self, x, batch_size, verbose)
1515 f = self.predict_function
1516 return self._predict_loop(f, ins,
-> 1517 batch_size=batch_size, verbose=verbose)
1518
1519 def train_on_batch(self, x, y,
keras/engine/training.pyc in _predict_loop(self, f, ins, batch_size, verbose)
1139 ins_batch = _slice_arrays(ins, batch_ids)
1140
-> 1141 batch_outs = f(ins_batch)
1142 if not isinstance(batch_outs, list):
1143 batch_outs = [batch_outs]
keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
2266 updated = session.run(self.outputs + [self.updates_op],
2267 feed_dict=feed_dict,
-> 2268 **self.session_kwargs)
2269 return updated[:len(self.outputs)]
2270
tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
893 try:
894 result = self._run(None, fetches, feed_dict, options_ptr,
--> 895 run_metadata_ptr)
896 if run_metadata:
897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
1091 feed_handles[subfeed_t] = subfeed_val
1092 else:
-> 1093 np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
1094
1095 if (not is_tensor_handle_feed and
numpy/core/numeric.pyc in asarray(a, dtype, order)
529
530 """
--> 531 return array(a, dtype, copy=False, order=order)
532
533
ValueError: object __array__ method not producing an array
我尝试使用谷歌搜索这个问题,但是唯一合理的匹配是一些中文博客文章,该文章基本上建议修补Keras,这显然是不切实际的。
最佳答案
您不必加载整个数据。您可以使用DataSet类逐段摄取数据。
当您的GPU处理数字时,Tensorflow可以帮助加载更多数据。您可以按照以下步骤操作。
关于python - 在GPU上预加载整个数据集以训练Keras模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46688822/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!