gpt4 book ai didi

python - 如何检查tensorflow是否使用整个内存RAM

转载 作者:行者123 更新时间:2023-12-01 07:36:24 26 4
gpt4 key购买 nike

我经历了一些奇怪的事情。当我运行 tensorflow 程序 时,它会在运行之前打印出以下信息:

Colocations handled automatically by placer.
2019-07-10 10:36:53.985595: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-07-10 10:36:54.011139: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3192000000 Hz
2019-07-10 10:36:54.011914: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x562dbc64bb10 executing computations on platform Host. Devices:
2019-07-10 10:36:54.011928: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2019-07-10 10:36:54.113358: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-07-10 10:36:54.114017: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x562dbf2935a0 executing computations on platform CUDA. Devices:
2019-07-10 10:36:54.114028: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-07-10 10:36:54.114235: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:01:00.0
totalMemory: 10.91GiB freeMemory: 10.19GiB
2019-07-10 10:36:54.114245: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-07-10 10:36:54.115348: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-07-10 10:36:54.115355: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-07-10 10:36:54.115359: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-07-10 10:36:54.115505: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9911 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
WARNING:tensorflow:From /home/sgnbx/anaconda3/envs/py3t2/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.

如您所见,它说:

totalMemory: 10.91GiB freeMemory: 10.19GiB

但是,当我使用此命令检查命令中有多少内存时:

 free -g

我看到这个输出:

              total        used        free      shared  buff/cache   available
Mem: 31 5 24 0 1 25
Swap: 0 0 0

为什么tensorflow无法访问整个内存?我可能错过了一些东西,请告诉我。

最佳答案

tensorflow/core/common_runtime/gpu/gpu_device.cc:1433 的 tensorflow 日志正在打印 GPU 上的信息(设备 0 - 另请注意源文件名 gpu_device .cc):

2019-07-10 10:36:54.114235: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with
properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:01:00.0
totalMemory: 10.91GiB freeMemory: 10.19GiB

GeForce GTX 1080 Ti内存为11GB。

free 命令显示系统中可用和已用的内存量,而不是显示卡。

关于python - 如何检查tensorflow是否使用整个内存RAM,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56975246/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com