- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
今天我遇到了 Keras 的一些非常奇怪的行为。 当我尝试使用简单模型在 iris-dataset 上进行分类运行时,keras 1.2.2 版本为我提供了 +- 95% 的准确度,而 keras 2.0+ 版本为每个训练示例预测相同的类别(导致准确度为 +- 35%,因为存在三种类型的虹膜)。唯一能让我的模型预测 +-95% 准确度的方法是将 keras 降级到 2.0 以下的版本:
我认为这是 Keras 的问题,因为我尝试了以下方法,但都没有效果;
由于模型非常简单并且可以自行运行(您只需要易于获取的 iris.csv 数据集),我决定包含整个代码;
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
#Load data
data_frame = pd.read_csv("iris.csv", header=None)
data_set = data_frame.values
X = data_set[:, 0:4].astype(float)
Y = data_set[:, 4]
#Encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
def baseline_model():
#Create & Compile model
model = Sequential()
model.add(Dense(8, input_dim=4, init='normal', activation='relu'))
model.add(Dense(3, init='normal', activation='sigmoid'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
#Create Wrapper For Neural Network Model For Use in scikit-learn
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=200, batch_size=5, verbose=0)
#Create kfolds-cross validation
kfold = KFold(n_splits=10, shuffle=True)
#Evaluate our model (Estimator) on dataset (X and dummy_y) using a 10-fold cross-validation procedure (kfold).
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Accuracy: {:2f}% ({:2f}%)".format(results.mean()*100, results.std()*100))
如果有人想复制错误,这里是我用来观察问题的依赖项:
numpy=1.16.4
pandas=0.25.0
sk-learn=0.21.2
theano=1.0.4
tensorflow=1.14.0
最佳答案
在 Keras 2.0 中,许多参数更改了名称,有兼容层来保持工作正常,但不知何故,它在使用 KerasClassifier
时并不适用。
在这部分代码中:
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=200, batch_size=5, verbose=0)
您正在使用旧名称nb_epoch
,而不是现代名称epochs
。默认值为 epochs=1
,这意味着您的模型仅接受一个 epoch 的训练,产生的预测质量非常低。
另请注意:
model.add(Dense(3, init='normal', activation='sigmoid'))
您应该使用 softmax
激活而不是 sigmoid
,因为您使用的是分类交叉熵损失:
model.add(Dense(3, init='normal', activation='softmax'))
关于python - keras v1.2.2 与 keras v2+ 的奇怪行为(准确度存在巨大差异),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57498998/
我通过在共享首选项中使用 GSON 将其转换为 json 来存储我的复杂对象。但是在检索它时,无法获得预期的字符串。 代码 这里 holderListCustomizationMap 是对象的复杂映射
因此,我正在尝试对大于可用RAM的gz压缩文件执行某种面向行的操作,因此排除了将其首先读取为字符串的情况。问题是,如何在rust(缺少gunzip file.gz|./my-rust-program)
我试图更好地理解为什么具有潜在大精度的大数字处理不一致,特别是在 JavaScript 及其本地化工具(例如 ECMA-402/Intl)中。我假设这与 float 的使用有关,但我想了解限制在哪里和
我们有一个 5GB 的 csv 文件,这是我们业务的主列表。 有多个类别,每个类别包含数千条记录。我们的目标是将每个类别导出为其自己的 csv 文件。 我们如何运行查询并导出数据? 运行 OSX。有没
基于上一个问题 ( see here ),我试图通过 xmlEventParse 读取许多大型 xml 文件,同时保存节点变化数据。使用此示例 xml:https://www.nlm.nih.gov/
我正在开发一个系统,它加载一个巨大的 CSV 文件(超过 100 万行)并保存到数据库中。每行也有超过一千个字段。 CSV 文件被视为一个批处理,每一行都被视为其子对象。在添加对象的过程中,每个对象都
借助node-google模块 我编写了一个简单的 Node 模块来为我的网络应用程序启用“文本网络搜索”功能,并在我的一个 View 中显示结果。 由于在来自同一 IP 的少量查询后 Google
我有相当大的 4D 阵列 [20x20x40x15000],我使用 h5py 将其作为 HDF5 文件保存到磁盘.现在的问题是我想计算整个数组的平均值,即使用: numpy.average(HDF5_
我在遗留代码库中连接巨大的 CString 时遇到问题。 CStrings 可以包含 base64 编码的文件,因此可能很大。在某些时候,这些 CString 会像这样连接起来: result +=
我正在尝试让我的服务器提供来自另一台服务器的巨大文件。但是,为了保护我的凭据免受该远程服务器的攻击,我不能简单地将请求者重定向到文件 url;另一方面,虽然使用 StreamingHttpRespon
感谢对此的任何见解,我有 2 个问题: 1) 弄清楚为什么我的本地数据库 oplog 庞大且不断增长 2) 安全删除(或重置)我的 local.oplog 以释放 18 GB 的浪费空间 场景:我一直
我的预期任务:获取大量数据(1 GB 及更多大小)json 字符串,操作(进行一些格式化、解析 json、重组 json 数据)并写入新格式化的 json 字符串作为响应。处理这种情况的更好方法是什么
我做了一个小的 Angular 4 应用程序,但我不知道如何应用 tree shaking 和 aot 编译。我运行的命令如下: ng build --prod --aot 但我得到的结果仍然很大,供
我是一名优秀的程序员,十分优秀!