gpt4 book ai didi

python - Pandas:满足类别内多个条件的所有结果

转载 作者:行者123 更新时间:2023-12-01 07:24:05 24 4
gpt4 key购买 nike

我的数据框中有 65 K 条记录,例如下面的代码片段:

Scrip   Timestamp1          NSETS               NSEPr Buyq1 Buyq2   Buyq3   Buyq4   Buyq5   Sellq1  Sellq2  Sellq3  Sellq4  Sellq5  Sellp1  Sellp2  Sellp3  Sellp4  Sellp5  buyp1   buyp2   buyp3   buyp4   buyp5   ActPr   TotalBuyQty TotalSellQty    
ALANKIT 2018-01-12 13:02:06 2018-01-12 13:00:50 78.10 759.00 100.00 996.00 1287.00 200 15.00 300.00 100.00 1787.00 5614.00 78.25 78.35 78.40 78.45 78.50 78.10 78.05 78.00 77.80 77.75 78.25 63928 194206
ALANKIT 2018-01-12 13:32:29 2018-01-12 13:22:21 79.50 28.00 100.00 200.00 1288.00 248 50.00 178.00 898.00 100.00 487.00 79.50 79.55 79.60 79.65 79.75 79.30 79.15 79.10 79.05 78.80 79.20 61927 175983
ALANKIT 2018-01-12 13:36:26 2018-01-12 13:34:51 79.20 39.00 3649.00 1287.00 7.00 11 1500.00 1024.00 1000.00 220.00 65.00 79.20 79.25 79.50 79.55 79.60 79.15 79.00 78.85 78.65 78.55 79.00 65503 176990
ALANKIT 2018-01-12 14:32:29 2018-01-12 14:31:23 78.80 810.00 1000.00 1287.00 1342.00 555 58.00 20.00 100.00 10.00 1250.00 78.80 78.85 78.90 78.95 79.00 78.70 78.60 78.55 78.50 78.30 78.70 84405 184759
ALANKIT 2018-01-12 14:12:58 2018-01-12 14:11:22 78.50 1.00 5.00 100.00 25.00 510 2542.00 25.00 95.00 50.00 500.00 78.50 78.55 78.60 78.85 78.90 78.30 78.25 78.20 78.15 78.10 78.85 74505 189866
APEX 2018-03-05 14:14:30 2018-03-05 14:13:23 72.00 51.00 71.00 20.00 150 1.00 1.00 14.00 20.00 1108.00 690.00 690.15 690.80 690.95 691.00 689.60 689.55 689.45 689.15 689.00 0 35535 61963 690.00
APEX 2018-01-31 11:52:11 2018-01-31 11:50:48 100.00 10.00 10.00 15.00 50 50.00 50.00 10.00 16.00 67.00 621.15 621.20 621.40 621.80 621.95 619.50 619.00 618.00 617.00 616.50 0 8083 25609 619.50
APEX 2018-01-31 11:56:14 2018-01-31 11:54:48 38.00 29.00 67.00 174.00 124 53.00 50.00 50.00 16.00 25.00 625.00 625.40 625.45 626.00 626.90 623.95 623.90 623.50 623.45 623.00 0 12587 23399 624.00
APEX 2018-01-18 09:36:03 2018-01-18 09:35:14 38.00 46.00 67.00 226.00 6 5.00 50.00 36.00 20.00 30.00 781.00 781.80 781.85 781.95 782.00 780.20 780.15 780.05 780.00 779.95 782.70 17023 21946 780.75
APEX 2018-01-18 09:44:16 2018-01-18 09:42:15 47.00 50.00 25.00 67.00 2887 25.00 8.00 58.00 5.00 50.00 791.60 791.65 791.95 792.30 792.65 790.20 790.15 790.00 789.05 789.00 791.45 22314 26007 790.05
STRTECH 2018-01-19 14:57:51 2018-01-19 14:56:24 68.50 1.00 5.00 2.00 3 3.00 20.00 3.00 5.00 10.00 2484.95 2485.00 2489.00 2489.90 2490.00 2477.55 2477.50 2477.20 2477.05 2476.70 2480.60 32408 8565 2485.00
STRTECH 2018-01-25 10:50:10 2018-01-25 10:47:46 32.65 1.00 511.00 1.00 12 9.00 5.00 100.00 23.00 20.00 2484.60 2484.70 2484.80 2485.00 2486.00 2480.15 2480.10 2480.00 2475.00 2471.15 2534.60 28306 18002 2484.70

相同的脚本和相同的日期(来自字段Timestamp1)中,我想查询所有记录并返回满足2个复杂条件的记录。

这些条件是:
a)NSEPr 值应比那一天的 NSEPr 第一个值至少高 3.5%(可以从此处的 Timetamp1 中提取日期)
b) SellQ1 + SellQ2..(直到Sell 5)的值(value)总和应为 3 倍(或高于 BuyQ1 + BuyQ2..(直到BuyQ5)的值(value)总和。

我设法使用 df['mydt'] = df.Timestamp1.dt.date..
从 timestamp1 中提取日期我尝试使用 for 循环和 df.iterrows() 来实现上述任务,即遍历 Df。由于无限循环而失败。

我记得上面的内容可以使用 df.groupby['Scrip','mydt'].apply 实现或者也许通过使用 df.groupby['scrip','mydt'].apply(lambda x

但是我无法找到解决方案。我非常感谢对上述问题的一些帮助。

TIA。

最佳答案

它看起来像:

# get the first values per scrip and day
df_a_first_vals= df.groupby([df['Timestamp1'].dt.date, df['Scrip']]).agg({'NSEPr': 'first'})

# create an indexer for condition b and extract the
# corresponding data with the date stored in a separate
# column
df_b_indexer= df[['Sellq1', 'Sellq2', 'Sellq3', 'Sellq4', 'Sellq5']].sum(axis='columns') >= df[['Buyq1', 'Buyq2', 'Buyq3', 'Buyq4', 'Buyq5']].sum(axis='columns')*3
df_b_data= df[df_b_indexer].copy(deep=True)
df_b_data['Timestamp1_date']= df_b_data['Timestamp1'].dt.date

# merge a and b to apply condition a
df_ab_merged= df_b_data.merge(df_a_first_vals, left_on=['Timestamp1_date', 'Scrip'], right_index=True, suffixes=['', '_first'])

# output the result
df_ab_merged[df_ab_merged['NSEPr']>=df_ab_merged['NSEPr_first']*1.035]

您的数据似乎不包含这样的记录,因此我只是将 (APEX, 2018-01-31T11:52:11) 的 NSEPr 值从 100.00 更改为 20.00。然后上面的逻辑输出当天的第二行:

Out[148]: 
Scrip Timestamp1 NSETS NSEPr ... TotalBuyQty TotalSellQty Timestamp1_date NSEPr_first
7 APEX 2018-01-31 11:56:14 2018-01-31 11:54:48 38.0 ... 23399 624.0 2018-01-31 20.0

[1 rows x 29 columns]

顺便说一句,如果您的数据非常大并且您想避免上面的深层复制,您可以将 Timestamp1 的日期部分存储为单独的列。

测试数据(我只是手动更改了倒数第二条记录,所以它符合条件):

raw="""Scrip   Timestamp1          NSETS               NSEPr Buyq1 Buyq2   Buyq3   Buyq4   Buyq5   Sellq1  Sellq2  Sellq3  Sellq4  Sellq5  Sellp1  Sellp2  Sellp3  Sellp4  Sellp5  buyp1   buyp2   buyp3   buyp4   buyp5   ActPr   TotalBuyQty TotalSellQty    
ALANKIT 2018-01-12T13:02:06 2018-01-12T13:00:50 78.10 759.00 100.00 996.00 1287.00 200 15.00 300.00 100.00 1787.00 5614.00 78.25 78.35 78.40 78.45 78.50 78.10 78.05 78.00 77.80 77.75 78.25 63928 194206
ALANKIT 2018-01-12T13:32:29 2018-01-12T13:22:21 79.50 28.00 100.00 200.00 1288.00 248 50.00 178.00 898.00 100.00 487.00 79.50 79.55 79.60 79.65 79.75 79.30 79.15 79.10 79.05 78.80 79.20 61927 175983
ALANKIT 2018-01-12T13:36:26 2018-01-12T13:34:51 79.20 39.00 3649.00 1287.00 7.00 11 1500.00 1024.00 1000.00 220.00 65.00 79.20 79.25 79.50 79.55 79.60 79.15 79.00 78.85 78.65 78.55 79.00 65503 176990
ALANKIT 2018-01-12T14:32:29 2018-01-12T14:31:23 78.80 810.00 1000.00 1287.00 1342.00 555 58.00 20.00 100.00 10.00 1250.00 78.80 78.85 78.90 78.95 79.00 78.70 78.60 78.55 78.50 78.30 78.70 84405 184759
ALANKIT 2018-01-12T14:12:58 2018-01-12T14:11:22 78.50 1.00 5.00 100.00 25.00 510 2542.00 25.00 95.00 50.00 500.00 78.50 78.55 78.60 78.85 78.90 78.30 78.25 78.20 78.15 78.10 78.85 74505 189866
APEX 2018-03-05T14:14:30 2018-03-05T14:13:23 72.00 51.00 71.00 20.00 150 1.00 1.00 14.00 20.00 1108.00 690.00 690.15 690.80 690.95 691.00 689.60 689.55 689.45 689.15 689.00 0 35535 61963 690.00
APEX 2018-01-31T11:52:11 2018-01-31T11:50:48 20.00 10.00 10.00 15.00 50 50.00 50.00 10.00 16.00 67.00 621.15 621.20 621.40 621.80 621.95 619.50 619.00 618.00 617.00 616.50 0 8083 25609 619.50
APEX 2018-01-31T11:56:14 2018-01-31T11:54:48 38.00 29.00 67.00 174.00 124 53.00 50.00 50.00 16.00 25.00 625.00 625.40 625.45 626.00 626.90 623.95 623.90 623.50 623.45 623.00 0 12587 23399 624.00
APEX 2018-01-18T09:36:03 2018-01-18T09:35:14 38.00 46.00 67.00 226.00 6 5.00 50.00 36.00 20.00 30.00 781.00 781.80 781.85 781.95 782.00 780.20 780.15 780.05 780.00 779.95 782.70 17023 21946 780.75
APEX 2018-01-18T09:44:16 2018-01-18T09:42:15 47.00 50.00 25.00 67.00 2887 25.00 8.00 58.00 5.00 50.00 791.60 791.65 791.95 792.30 792.65 790.20 790.15 790.00 789.05 789.00 791.45 22314 26007 790.05
STRTECH 2018-01-19T14:57:51 2018-01-19T14:56:24 20.50 1.00 5.00 2.00 3 3.00 20.00 3.00 5.00 10.00 2484.95 2485.00 2489.00 2489.90 2490.00 2477.55 2477.50 2477.20 2477.05 2476.70 2480.60 32408 8565 2485.00
STRTECH 2018-01-19T15:50:10 2018-01-25T10:47:46 32.65 1.00 511.00 1.00 12 9.00 5.00 100.00 23.00 20.00 2484.60 2484.70 2484.80 2485.00 2486.00 2480.15 2480.10 2480.00 2475.00 2471.15 2534.60 28306 18002 2484.70"""

df= pd.read_csv(io.StringIO(raw), sep='\s+', parse_dates=['Timestamp1', 'NSETS'], index_col=None)

结果:

Out[212]: 
Scrip Timestamp1 NSETS NSEPr ... TotalBuyQty TotalSellQty Timestamp1_date NSEPr_first
11 STRTECH 2018-01-19 15:50:10 2018-01-25 10:47:46 32.65 ... 18002 2484.7 2018-01-19 20.5

[1 rows x 29 columns]

关于python - Pandas:满足类别内多个条件的所有结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57542174/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com