- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
出于校准目的,我对水流进行了 N 次测量,每一次都非常耗时。我想减少测量次数。听起来这是功能选择的一部分,因为我正在减少我拥有的列数。但是 - 我需要预测我将要放弃的测量值。
以下是数据示例:
SerialNumber val speed
0 193604048 1.350254 105.0
1 193604048 1.507517 3125.0
2 193604048 1.455142 525.0
6 193604048 1.211184 12.8
7 193604048 1.238835 20.0
对于每个序列号,我都有一套完整的速度值测量值。理想情况下,我想要一个模型,其输出是所有 N val 测量的向量,但选项似乎都是神经网络,我现在试图避免。还有其他选择吗?
如果我将此数据输入回归模型,如何区分每个序列号数据集?
为了确保我的目标明确 - 我想了解 N 个测量值的历史测量值,并找到可以降低哪个速度值以仍然准确预测所有 N 个输出值。
谢谢!
最佳答案
我试图找到最适合您发布的示例数据的最简单方程,并从我的方程中搜索哈里斯屈服密度方程,“y = 1.0/(a + b * pow(x, c) )”,是一个很好的候选者。这是一个使用该方程和数据的图形化 Python 拟合器,其中非线性拟合器的初始参数估计值直接根据数据最大值和最小值计算得出。请注意,SerialNumber 本身与数据无关,不会在回归中使用。
我希望您可能会发现这个方程在您的工作中普遍有用,并且在对几个不同的数据集执行类似的回归之后,参数 a、b 和 c 在所有情况下都非常相似 - 即最好的结果。如果您的测量精度很高,我个人预计,通过这个三参数方程,每次校准应该可以使用至少四个数据点,其中最大、最小和沿着预期校准曲线的其他两个间隔良好的点。
请注意,此处拟合的参数 a = -1.91719091e-03。 b = 1.11357103e+00,c = -1.51294798e+01,得出 RMSE = 3.191,R 平方 = 0.9999
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
xData = numpy.array([1.350254, 1.507517, 1.455142, 1.211184, 1.238835])
yData = numpy.array([105.0, 3125.0, 525.0, 12.8, 20.0])
def func(x, a, b, c): # Harris yield density equation
return 1.0 / (a + b*numpy.power(x, c))
initialParameters = numpy.array([0.0, min(xData), -10.0 * max(xData)])
# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_title('Harris Yield Density Equation') # title
axes.set_xlabel('Val') # X axis data label
axes.set_ylabel('Speed') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
使用反转的 X 和 Y 进行更新
根据评论,这是一个三参数方程混合幂和 Eponential“a * pow(x, b) * exp(c * x)”图形拟合器,其中 X 和 Y 与之前的代码相反。这里,拟合参数 a = 1.05910664e+00、b = 5.26304345e-02 和 -2.25604946e-05 产生 RMSE = 0.0003602 和 R 平方 = 0.9999
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
xData = numpy.array([105.0, 3125.0, 525.0, 12.8, 20.0])
yData = numpy.array([1.350254, 1.507517, 1.455142, 1.211184, 1.238835])
def func(x, a, b, c): # mixed power and exponential equation
return a * numpy.power(x, b) * numpy.exp(c * x)
initialParameters = [1.0, 0.01, -0.01]
# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_title('Mixed Power and Exponential Equation') # title
axes.set_xlabel('Speed') # X axis data label
axes.set_ylabel('Val') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
关于python - 减少校准中的测量次数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57867119/
我是 Bison 解析的新手,我无法理解它是如何工作的。我有以下语法,其中我保留了最低限度的语法来突出问题。 %left '~' %left '+' %token T_VARIABLE %% star
我链接了 2 个映射器和 1 个缩减器。是否可以将中间输出(链中每个映射器的 o/p)写入 HDFS?我尝试为每个设置 OutputPath,但它似乎不起作用。现在,我不确定是否可以完成。有什么建议吗
我正在编写一些代码来管理自定义磁盘文件结构并将其同步到未连接的系统。我的要求之一是能够在实际生成同步内容之前估计同步的大小。作为一个简单的解决方案,我整理了一个包含完整路径文件名的 map ,作为高效
我来自一个 SQL 世界,其中查找由多个对象属性(published = TRUE 或 user_id = X)完成,并且有 任何地方都没有加入 (因为 1:1 缓存层)。文档数据库似乎很适合我的数据
在 R 中,我有一个整数向量。从这个向量中,我想随机减少每个整数元素的值,以获得向量的总和,即初始总和的百分比。 在这个例子中,我想将向量“x”减少到向量“y”,其中每个元素都被随机减少以获得等于初始
我发现自己遇到过几次我有一个 reducer /组合 fn 的情况,如下所示: def combiner(a: String, b: String): Either[String, String]
Ubuntu 12.04 nginx 1.2.4 avconv版本 avconv version 0.8.10-4:0.8.10-0ubuntu0.12.04.1, Copyright (c) 200
我是 R 编程语言的新手。我有一个包含 2 列(ID 和 Num)的数据集,如下所示: ID Num 3 8 3 12 4 15 4 18 4
我正在使用高阶函数将函数应用于向量中的每个元素并将结果作为标量值返回。 假设我有: v = c(0, 1, 2, 3, 4, 5, 6, 7, 8) 我想计算以左边 5 个整数为中心的所有这些整数的总
关闭。这个问题需要debugging details .它目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and th
这个问题在这里已经有了答案: How to write the dataframes in a list to a single csv file (2 个回答) 5年前关闭。 我正在尝试使用 Red
刚开始学习CUDA编程,对归约有些迷茫。 我知道与共享内存相比,全局内存有很多访问延迟,但我可以使用全局内存来(至少)模拟类似于共享内存的行为吗? 例如,我想对长度恰好为 BLOCK_SIZE * T
我经常使用OptiPNG或pngcrush减小PNG图像的文件大小。 我希望能够从.NET应用程序中以编程方式执行此类操作。我正在动态生成要发送到移动设备的PNG,因此我想减小文件大小。 图像质量很重
减少和减少让您在序列上累积状态。 序列中的每个元素都会修改累积的状态,直到 到达序列的末尾。 在无限列表上调用reduce 或reductions 有什么含义? (def c (cycle [0]))
这与R: use the newly generated data in the previous row有关 我意识到我面临的实际问题比我在上面的线程中给出的示例要复杂一些 - 似乎我必须将 3 个
有什么办法可以减少.ttf字体的大小?即如果我们要删除一些我们不使用的glyps。 最佳答案 使用Google Web Fonts,您可以限制字符集,例如: //fonts.googleapis.co
我需要在iOS中制作一个应用程序,在她的工作过程中发出类似“哔”的声音。 我已经使用MPMusicPlayerController实现了与背景ipod的交互。 问题: 由于来自ipod的音乐音量很大,
我有一个嵌套 map m,如下所示: m = Map("电子邮件"-> "a@b.com", "背景"-> Map("语言"-> "英语")) 我有一个数组arr = Array("backgroun
有什么原因为什么不应该转发map / reduce函数中收到的可写内容? 我的意思是-每个map / reduce函数都有一个可写的键/值,并可能发出一个键/值对。如果我想执行一些过滤,我应该只发出接
假设我有一个数据列表 val data = listOf("F 1", "D 2", "U 1", "D 3", "F 10") 我想执行每个元素的给定逻辑。 我必须在外部添加 var acc2 =
我是一名优秀的程序员,十分优秀!