- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试预测体育比赛的结果,因此希望以可以训练模型的方式转换我的数据框。目前,我正在使用 for 循环来遍历所有玩过的游戏,选择游戏的两名玩家并检查他们在实际游戏发生之前如何执行 x 游戏。之后,我想取这些球员之前比赛的统计数据的平均值,并将它们连接在一起。最后,我添加了实际游戏的真实结果,以便我可以根据真实结果训练模型。
现在我遇到了一些速度性能问题,我当前的代码大约需要 9 分钟才能完成 20000 个游戏(大约 200 个变量)。我已经设法从 20 分钟缩短到 9 分钟。
我首先将每个游戏添加到一个数据帧中,后来我将其更改为将每个单独的数据帧添加到一个列表中,并最后在该列表中创建一个大数据帧。我还添加了 if 语句,以确保如果玩家没有玩至少 x 场游戏,循环就会继续。
我预计结果会比 9 分钟快得多。我认为它可以快得多。
希望大家能帮帮我!
import pandas as pd
import numpy as np
import random
import string
letters = list(string.ascii_lowercase)
datelist = pd.date_range(start='1/1/2017', end='1/1/2019')
data = pd.DataFrame({'Date':np.random.choice(datelist,5000),
'League': np.random.choice(['LeagueA','LeagueB'], 5000),
'Home_player':np.random.choice(letters, 5000),
'Away_player':np.random.choice(letters, 5000),
'Home_strikes':np.random.randint(1,20,5000),
'Home_kicks':np.random.randint(1,20,5000),
'Away_strikes':np.random.randint(1,20,5000),
'Away_kicks':np.random.randint(1,20,5000),
'Winner':np.random.randint(0,2,5000)})
leagues = list(data['League'].unique())
home_columns = [col for col in data if col.startswith('Home')]
away_columns = [col for col in data if col.startswith('Away')]
# Determine to how many last x games to take statistics
total_games = 5
final_df = []
# Make subframe of league
for league in leagues:
league_data = data[data.League == league]
league_data = league_data.sort_values(by='Date').reset_index(drop=True)
# Pick the last game
league_data = league_data.head(500)
for i in range(0,len(league_data)):
if i < 1:
league_copy = league_data.sort_values(by='Date').reset_index(drop=True)
else:
league_copy = league_data[:-i].reset_index(drop=True)
# Loop back from the last game
last_game = league_copy.iloc[-1:].reset_index(drop=True)
# Take home and away player
Home_player = last_game.loc[0,"Home_player"] # Pick home team
Away_player = last_game.loc[0,'Away_player'] # pick away team
# # Remove last row so current game is not picked
df = league_copy[:-1]
# Now check the statistics of the games befóre this game was played
Home = df[df.Home_player == Home_player].tail(total_games) # Pick data from home team
# If the player did not play at least x number of games, then continue
if len(Home) < total_games:
continue
else:
Home = Home[home_columns].reset_index(drop=True) # Pick all columnnames that start with "Home"
# Do the same for the away team
Away = df[df.Away_player == Away_player].tail(total_games) # Pick data from home team
if len(Away) < total_games:
continue
else:
Away = Away[away_columns].reset_index(drop=True) # Pick all columnnames that start with "Home"
# Now concat home and away player data
Home_away = pd.concat([Home, Away], axis=1)
Home_away.drop(['Away_player','Home_player'],inplace=True,axis=1)
# Take the mean of all columns
Home_away = pd.DataFrame(Home_away.mean().to_dict(),index=[0])
# Now again add home team and away team to dataframe
Home_away["Home_player"] = Home_player
Home_away["Away_player"] = Away_player
winner = last_game.loc[0,"Winner"]
date = last_game.loc[0,"Date"]
Home_away['Winner'] = winner
Home_away['Date'] = date
final_df.append(Home_away)
final_df = pd.concat(final_df, axis=0)
final_df = final_df[['Date','Home_player','Away_player','Home_kicks','Away_kicks','Home_strikes','Away_strikes','Winner']]
最佳答案
这并不能回答您的问题,但您可以利用包 line_profiler 来查找代码中缓慢的部分。
资源: http://gouthamanbalaraman.com/blog/profiling-python-jupyter-notebooks.html
Line # Hits Time Per Hit % Time Line Contents
==============================================================
2 1 35.0 35.0 0.0 letters = list(string.ascii_lowercase)
3 1 11052.0 11052.0 0.0 datelist = pd.date_range(start='1/1/2017', end='1/1/2019')
4
5 1 3483.0 3483.0 0.0 data = pd.DataFrame({'Date':np.random.choice(datelist,5000),
6 1 1464.0 1464.0 0.0 'League': np.random.choice(['LeagueA','LeagueB'], 5000),
7 1 2532.0 2532.0 0.0 'Home_player':np.random.choice(letters, 5000),
8 1 1019.0 1019.0 0.0 'Away_player':np.random.choice(letters, 5000),
9 1 693.0 693.0 0.0 'Home_strikes':np.random.randint(1,20,5000),
10 1 682.0 682.0 0.0 'Home_kicks':np.random.randint(1,20,5000),
11 1 682.0 682.0 0.0 'Away_strikes':np.random.randint(1,20,5000),
12 1 731.0 731.0 0.0 'Away_kicks':np.random.randint(1,20,5000),
13 1 40409.0 40409.0 0.0 'Winner':np.random.randint(0,2,5000)})
14
15 1 6560.0 6560.0 0.0 leagues = list(data['League'].unique())
16 1 439.0 439.0 0.0 home_columns = [col for col in data if col.startswith('Home')]
17 1 282.0 282.0 0.0 away_columns = [col for col in data if col.startswith('Away')]
18
19 # Determine to how many last x games to take statistics
20 1 11.0 11.0 0.0 total_games = 5
21 1 12.0 12.0 0.0 final_df = []
22
23 # Make subframe of league
24 3 38.0 12.7 0.0 for league in leagues:
25
26 2 34381.0 17190.5 0.0 league_data = data[data.League == league]
27 2 30815.0 15407.5 0.0 league_data = league_data.sort_values(by='Date').reset_index(drop=True)
28 # Pick the last game
29 2 5045.0 2522.5 0.0 league_data = league_data.head(500)
30 1002 14202.0 14.2 0.0 for i in range(0,len(league_data)):
31 1000 11943.0 11.9 0.0 if i < 1:
32 2 28407.0 14203.5 0.0 league_copy = league_data.sort_values(by='Date').reset_index(drop=True)
33 else:
34 998 5305364.0 5316.0 4.2 league_copy = league_data[:-i].reset_index(drop=True)
35
36 # Loop back from the last game
37 1000 4945240.0 4945.2 3.9 last_game = league_copy.iloc[-1:].reset_index(drop=True)
38
39 # Take home and away player
40 1000 1504055.0 1504.1 1.2 Home_player = last_game.loc[0,"Home_player"] # Pick home team
41 1000 899081.0 899.1 0.7 Away_player = last_game.loc[0,'Away_player'] # pick away team
42
43 # # Remove last row so current game is not picked
44 1000 2539351.0 2539.4 2.0 df = league_copy[:-1]
45
46 # Now check the statistics of the games befóre this game was played
47 1000 16428854.0 16428.9 13.0 Home = df[df.Home_player == Home_player].tail(total_games) # Pick data from home team
48
49 # If the player did not play at least x number of games, then continue
50 1000 49133.0 49.1 0.0 if len(Home) < total_games:
51 260 2867.0 11.0 0.0 continue
52 else:
53 740 12968016.0 17524.3 10.2 Home = Home[home_columns].reset_index(drop=True) # Pick all columnnames that start with "Home"
54
55
56 # Do the same for the away team
57 740 12007650.0 16226.6 9.5 Away = df[df.Away_player == Away_player].tail(total_games) # Pick data from home team
58
59 740 33357.0 45.1 0.0 if len(Away) < total_games:
60 64 825.0 12.9 0.0 continue
61 else:
62 676 11598741.0 17157.9 9.1 Away = Away[away_columns].reset_index(drop=True) # Pick all columnnames that start with "Home"
63
64
65 # Now concat home and away player data
66 676 5114022.0 7565.1 4.0 Home_away = pd.concat([Home, Away], axis=1)
67 676 9702001.0 14352.1 7.6 Home_away.drop(['Away_player','Home_player'],inplace=True,axis=1)
68
69 # Take the mean of all columns
70 676 12171184.0 18004.7 9.6 Home_away = pd.DataFrame(Home_away.mean().to_dict(),index=[0])
71
72 # Now again add home team and away team to dataframe
73 676 5112558.0 7563.0 4.0 Home_away["Home_player"] = Home_player
74 676 4880017.0 7219.0 3.8 Home_away["Away_player"] = Away_player
75
76 676 791718.0 1171.2 0.6 winner = last_game.loc[0,"Winner"]
77 676 696925.0 1031.0 0.5 date = last_game.loc[0,"Date"]
78 676 5142111.0 7606.7 4.1 Home_away['Winner'] = winner
79 676 9630466.0 14246.3 7.6 Home_away['Date'] = date
80
81 676 16125.0 23.9 0.0 final_df.append(Home_away)
82 1 5088063.0 5088063.0 4.0 final_df = pd.concat(final_df, axis=0)
83 1 18424.0 18424.0 0.0 final_df = final_df[['Date','Home_player','Away_player','Home_kicks','Away_kicks','Home_strikes','Away_strikes','Winner']]
关于python - 循环速度优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57993931/
我是 PHP 新手。我一直在脚本中使用 for 循环、while 循环、foreach 循环。我想知道 哪个性能更好? 选择循环的标准是什么? 当我们在另一个循环中循环时应该使用哪个? 我一直想知道要
我在高中的编程课上,我的作业是制作一个基本的小计和顶级计算器,但我在一家餐馆工作,所以制作一个只能让你在一种食物中读到。因此,我尝试让它能够接收多种食品并将它们添加到一个价格变量中。抱歉,如果某些代码
这是我正在学习的一本教科书。 var ingredients = ["eggs", "milk", "flour", "sugar", "baking soda", "baking powder",
我正在从字符串中提取数字并将其传递给函数。我想给它加 1,然后返回字符串,同时保留前导零。我可以使用 while 循环来完成此操作,但不能使用 for 循环。 for 循环只是跳过零。 var add
编辑:我已经在程序的输出中进行了编辑。 该程序要求估计给定值 mu。用户给出一个值 mu,同时还提供了四个不等于 1 的不同数字(称为 w、x、y、z)。然后,程序尝试使用 de Jaeger 公式找
我正在编写一个算法,该算法对一个整数数组从末尾到开头执行一个大循环,其中包含一个 if 条件。第一次条件为假时,循环可以终止。 因此,对于 for 循环,如果条件为假,它会继续迭代并进行简单的变量更改
现在我已经习惯了在内存非常有限的情况下进行编程,但我没有答案的一个问题是:哪个内存效率更高;- for(;;) 或 while() ?还是它们可以平等互换?如果有的话,还要对效率问题发表评论! 最佳答
这个问题已经有答案了: How do I compare strings in Java? (23 个回答) 已关闭 8 年前。 我正在尝试创建一个小程序,我可以在其中读取该程序的单词。如果单词有 6
这个问题在这里已经有了答案: python : list index out of range error while iteratively popping elements (12 个答案) 关
我正在尝试向用户请求 4 到 10 之间的整数。如果他们回答超出该范围,它将进入循环。当用户第一次正确输入数字时,它不会中断并继续执行 else 语句。如果用户在 else 语句中正确输入数字,它将正
我尝试创建一个带有嵌套 foreach 循环的列表。第一个循环是循环一些数字,第二个循环是循环日期。我想给一个日期写一个数字。所以还有另一个功能来检查它。但结果是数字多次写入日期。 Out 是这样的:
我想要做的事情是使用循环创建一个数组,然后在另一个类中调用该数组,这不会做,也可能永远不会做。解决这个问题最好的方法是什么?我已经寻找了所有解决方案,但它们无法编译。感谢您的帮助。 import ja
我尝试创建一个带有嵌套 foreach 循环的列表。第一个循环是循环一些数字,第二个循环是循环日期。我想给一个日期写一个数字。所以还有另一个功能来检查它。但结果是数字多次写入日期。 Out 是这样的:
我正在模拟一家快餐店三个多小时。这三个小时分为 18 个间隔,每个间隔 600 秒。每个间隔都会输出有关这 600 秒内发生的情况的统计信息。 我原来的结构是这样的: int i; for (i=0;
这个问题已经有答案了: IE8 for...in enumerator (3 个回答) How do I check if an object has a specific property in J
哪个对性能更好?这可能与其他编程语言不一致,所以如果它们不同,或者如果你能用你对特定语言的知识回答我的问题,请解释。 我将使用 c++ 作为示例,但我想知道它在 java、c 或任何其他主流语言中的工
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
我是 C 编程和编写代码的新手,以确定 M 测试用例的质因数分解。如果我一次只扫描一次,该功能本身就可以工作,但是当我尝试执行 M 次时却惨遭失败。 我不知道为什么 scanf() 循环有问题。 in
这个问题已经有答案了: JavaScript by reference vs. by value [duplicate] (4 个回答) 已关闭 3 年前。 我在使用 TSlint 时遇到问题,并且理
我尝试在下面的代码中添加 foreach 或 for 循环,以便为 Charts.js 创建多个数据集。这将允许我在此折线图上创建多条线。 我有一个 PHP 对象,我可以对其进行编码以稍后填充变量,但
我是一名优秀的程序员,十分优秀!