- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 TensorFlow(而不是 Keras)重现 Coursera ML 类(class)的 NN 练习。
我发现使用tf.metrics.accuracy
计算准确度给出的结果低于我计算时的准确度。
相关代码是:
accuracy, update_op = tf.metrics.accuracy(labels=y, predictions=tf.argmax(tf.sigmoid(output), axis=1))
...
# in session:
acc = sess.run(accuracy, feed_dict={tf_x: X, tf_y: y})
sess.run(update_op, feed_dict={tf_x: X, tf_y: y})
print(f'step {step} - accuracy: {acc}')
...
# real accuracy
predictions = sess.run(tf.argmax(tf.sigmoid(output), axis=1), feed_dict={tf_x: X})
pred_y = predictions == y
print(f'Training Set Accuracy after training: {np.mean(pred_y) * 100}%')
甚至可以有 30% 的差异(即 acc 为 0.5,实际精度为 0.8)
我做错了什么吗?
请注意,如果我这样做:
equal = tf.equal(tf.cast(tf.argmax(tf.sigmoid(output), 1), tf.int32), y)
acc_op = tf.reduce_mean(tf.cast(equal, tf.float32))
acc = sess.run(acc_op, feed_dict={tf_x: X, tf_y: y})
我得到了相同的结果...那么 tf.metrics.accuracy 是否以其他方式计算?
最佳答案
解决方案:第一次调用 sess.run(update_op, feed_dict)
,然后sess.run(accuracy)
。如果喂入新批处理,并且需要该批处理的准确性,则必须首先重置一些隐藏变量 - 工作流程如下:
accuracy, update_op = tf.metrics.accuracy(tf_labels, tf_predictions, scope="my_metrics")
running_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="my_metrics")
running_vars_initializer = tf.variables_initializer(var_list=running_vars)
for i in range(num_batches):
# explicitly initialize/reset 'total' and 'count' to 0
sess.run(running_vars_initializer)
# feed labels and predictions at i-th batch to update_ops
feed_dict={tf_labels: y[i], tf_predictions: tf.argmax(tf.sigmoid(output[i]), axis=1)}
session.run(update_op, feed_dict=feed_dict)
# compute and print accuracy from current 'total' and 'count'
print('Batch {} accuracy: {}'.format(i, session.run(accuracy)))
<小时/>
详细信息:
tf.metrics.accuracy
使用两个运行时变量
total
(正确预测的数量)和
count
(输入的标签数量),在幕后本地初始化。
accuracy
仅更新一次
update_op
被调用 - 步骤:
total
和count
初始化为零sess.run(update_op, feed_dict)
--> total
和count
按 feed_dict
更新sess.run(accuracy)
--> accuracy
使用当前 total
和count
计算指标sess.run(accuracy, feed_dict)
--> accuracy
使用当前 total
和count
计算指标最后两个说的是,feed_dict
实际上没有做任何改变accuracy
; accuracy
运行于 total
和count
,仅通过 update_op
更新。最后,
sess.run(accuracy, ...)
是否没有重置total
和count
到0这很大程度上就是 total
的原因和count
完全使用 - 用于可扩展性;它通过保存运行历史记录来计算太大而无法一次性放入内存的数据指标。
最后,您的占位符逻辑看起来不对 - 您将数据输入 tf_x
和tf_y
,但在 tf.metrics.accuracy(...)
内任何地方都找不到。 - 但这是一个简单的解决方法。
关于python - tf.metrics.accuracy 与实际准确度不匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58007918/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!