gpt4 book ai didi

python - 使用特定 Miniconda Python 和 NumPy 版本进行 CircleCI 测试

转载 作者:行者123 更新时间:2023-12-01 07:10:31 25 4
gpt4 key购买 nike

我正在开发一个使用 CircleCI 持续集成平台的项目。我使用Python作为主要语言,使用Miniconda作为平台。我想在 CircleCI 上使用 Miniconda 测试多个 Python 和 NumPy 版本。

我尝试使用不同的 Python 镜像,但它仅使用 Python 3.7,因为我安装了最新的 Miniconda 版本。你能告诉我如何使用多个版本吗?

下面是config.yml:

version: 2.0
workflows:
version: 2
test:
jobs:
- py3.6-np1.15
- py3.5-np1.15
- py3.6-np1.14
- py3.5-np1.14
- py3.7-np1.15
- py3.5-np1.16
- py3.6-np1.16
- py3.7-np1.16

jobs:
py3.6-np1.15: &test-template
docker:
- image: circleci/python:3.6.8
environment:
NUMPY_VERSION: 1.15.2
CYTHON_VERSION: 0.29.2
working_directory: ~/repo

steps:
- checkout
- run:
name: Install System Dependencies
command: sudo apt-get update && sudo apt-get install -y libmpich12 libmpich-dev build-essential

# Download and cache dependencies
- restore_cache:
keys:
- v1-dependencies-{{ .Environment.CIRCLE_JOB }}-{{ checksum "setup.py" }}

- run:
name: install anaconda
command: |
wget https://repo.continuum.io/miniconda/Miniconda3-4.7.10-Linux-x86_64.sh -O ~/miniconda.sh
chmod +x ~/miniconda.sh && ~/miniconda.sh -b
export PATH=$HOME/miniconda3/bin:$PATH
conda update --quiet --yes conda

- run:
name: Install numpy, cython, mdtraj
command: |
export PATH=$HOME/miniconda3/bin:$PATH
conda install --quiet --yes numpy==$NUMPY_VERSION cython==$CYTHON_VERSION
conda install --quiet --yes -c conda-forge mdtraj

# - run:
# name: Upgrade pip
# command: |
# python3 -m venv venv
# . venv/bin/activate
# pip install pip==18.0

# - run:
# name: Install numpy and cython
# command: |
# python3 -m venv venv
# . venv/bin/activate
# pip install --progress-bar off numpy==$NUMPY_VERSION cython==$CYTHON_VERSION

- run:
name: Install and build
command: |
export PATH=$HOME/miniconda3/bin:$PATH
pip install --progress-bar off .[dev]
python setup.py build_ext --inplace
python setup.py install



py3.5-np1.15:
<<: *test-template
docker:
- image: circleci/python:3.5.7
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.29.2

py3.6-np1.14:
<<: *test-template
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.29.2

py3.5-np1.14:
<<: *test-template
docker:
- image: circleci/python:3.5.7
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.29.2

py3.7-np1.15:
<<: *test-template
docker:
- image: circleci/python:3.7.3

py3.5-np1.16:
<<: *test-template
docker:
- image: circleci/python:3.5.7
environment:
NUMPY_VERSION: 1.16.5
CYTHON_VERSION: 0.29.2

py3.6-np1.16:
<<: *test-template
environment:
NUMPY_VERSION: 1.16.5
CYTHON_VERSION: 0.29.2

py3.7-np1.16:
<<: *test-template
docker:
- image: circleci/python:3.7.3
environment:
NUMPY_VERSION: 1.16.5
CYTHON_VERSION: 0.29.2

最佳答案

这是一个关于如何将 CircleCI 与 Miniconda 以及特定 Python 和 NumPy 版本一起使用的最小示例配置,从空 ubuntu:bionic 开始图片。

version: 2
jobs:
build:
docker:
- image: ubuntu:bionic
environment:
PYTHON_VERSION: 3.5.5
NUMPY_VERSION: 1.14.2
steps:
- checkout
- run:
name: Setup Miniconda
command: |
apt update
apt install -y wget
cd $HOME
wget "https://repo.anaconda.com/miniconda/Miniconda3-4.7.10-Linux-x86_64.sh" -O miniconda.sh
printf '%s' "8a324adcc9eaf1c09e22a992bb6234d91a94146840ee6b11c114ecadafc68121 miniconda.sh" | sha256sum -c
bash miniconda.sh -b -p $HOME/miniconda
- run:
name: Setup environment and run tests
command: |
export PATH="$HOME/miniconda/bin:$PATH"
conda update -y conda
conda create -n myenv python=$PYTHON_VERSION -c conda-forge
source activate myenv
conda install -y numpy=$NUMPY_VERSION
python --version
python -c "import numpy; print(numpy.__version__)"

我认为下载 Miniconda 安装脚本后验证校验和是一个很好的做法 Miniconda3-4.7.10-Linux-x86_64.sh来自互联网。

您可以更改环境变量PYTHON_VERSIONNUMPY_VERSION获取其他版本。

目前我们只是验证我们所需的 Python 和 NumPy 版本是否与 python --version 一起使用,而不是“真正的”测试。和python -c "import numpy; print(numpy.__version__)" 。对于上面的示例,您应该在日志末尾找到:

Python 3.5.5
1.14.2
<小时/>

根据您选择的版本,您可能会收到错误消息:

  • 如果您得到PackagesNotFoundError ,您需要确保所选 channel 具有您正在寻找的软件包版本。 (如上例中选择了 conda-forge。)
  • 如果您得到UnsatisfiableError ,您选择了不兼容的软件包版本。
<小时/>

以下是多个版本的示例配置:

version: 2

workflows:
version: 2
test:
jobs:
- python_3.5
- python_3.6
- python_3.7

template: &template
docker:
- image: ubuntu:bionic
steps:
- checkout
- run:
name: Setup Miniconda
command: |
apt update
apt install -y wget
cd $HOME
wget "https://repo.anaconda.com/miniconda/Miniconda3-4.7.10-Linux-x86_64.sh" -O miniconda.sh
printf '%s' "8a324adcc9eaf1c09e22a992bb6234d91a94146840ee6b11c114ecadafc68121 miniconda.sh" | sha256sum -c
bash miniconda.sh -b -p $HOME/miniconda
- run:
name: Setup environment and run tests
command: |
export PATH="$HOME/miniconda/bin:$PATH"
conda update -y conda
conda create -n myenv python=$PYTHON_VERSION
source activate myenv
conda install -y pip numpy=$NUMPY_VERSION
python --version
pip --version
python -c "import numpy; print(numpy.__version__)"

jobs:
python_3.5:
<<: *template
environment:
PYTHON_VERSION: 3.5
NUMPY_VERSION: 1.14.2
python_3.6:
<<: *template
environment:
PYTHON_VERSION: 3.6
NUMPY_VERSION: 1.15.2
python_3.7:
<<: *template
environment:
PYTHON_VERSION: 3.7
NUMPY_VERSION: 1.16.5
<小时/>

如果我将这个最小的示例应用于您的案例,配置将类似于:

version: 2.0

workflows:
version: 2
test:
jobs:
- py3.6-np1.15
- py3.5-np1.15
- py3.6-np1.14
- py3.5-np1.14
- py3.7-np1.15
- py3.6-np1.16
- py3.7-np1.16

test-template: &test-template
docker:
- image: ubuntu:bionic
steps:
- checkout
- run:
name: Install System Dependencies
command: apt-get update && apt-get install -y libmpich12 libmpich-dev build-essential

# Download and cache dependencies
- restore_cache:
keys:
- v1-dependencies-{{ .Environment.CIRCLE_JOB }}-{{ checksum "setup.py" }}

- run:
name: install anaconda
command: |
apt update
apt install -y wget
cd $HOME
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
chmod +x ~/miniconda.sh && bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH=$HOME/miniconda/bin:$PATH

- run:
name: Install numpy, cython, mdtraj
command: |
export PATH="$HOME/miniconda/bin:$PATH"
conda update --yes conda
echo $PYTHON_VERSION
conda create -n myenv python=$PYTHON_VERSION -c conda-forge
source activate myenv
conda install --yes pip
conda install --yes -c conda-forge numpy=$NUMPY_VERSION cython=$CYTHON_VERSION
conda install --yes -c conda-forge nose mdtraj
python --version
python -c "import numpy; print(numpy.__version__)"

- run:
name: Install and build package
command: |
export PATH=$HOME/miniconda/bin:$PATH
source activate myenv
pip install --progress-bar off .[dev]
python setup.py build_ext --inplace
python setup.py install

- save_cache:
paths:
- ~/miniconda
key: v1-dependencies-{{ checksum "setup.py" }}

- run:
name: Run non-MPI tests
command: |
export PATH=$HOME/miniconda/bin:$PATH
source activate myenv
nosetests -a '!mpi' package

- run:
name: Run MPI tests
command: |
export PATH=$HOME/miniconda/bin:$PATH
source activate myenv
OMP_NUM_THREADS=1 mpiexec -n 2 nosetests -a mpi package

- store_artifacts:
path: test-reports
destination: test-reports

jobs:
py3.6-np1.15:
<<: *test-template
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.6

py3.5-np1.15:
<<: *test-template
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.5

py3.6-np1.14:
<<: *test-template
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.6

py3.5-np1.14:
<<: *test-template
environment:
NUMPY_VERSION: 1.14.2
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.5

py3.7-np1.15:
<<: *test-template
environment:
NUMPY_VERSION: 1.15.2
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.7.1

py3.6-np1.16:
<<: *test-template
environment:
NUMPY_VERSION: 1.16.5
CYTHON_VERSION: 0.26.1
PYTHON_VERSION: 3.6

py3.7-np1.16:
<<: *test-template
environment:
NUMPY_VERSION: 1.16.5
CYTHON_VERSION: 0.29.2
PYTHON_VERSION: 3.7.1

关于python - 使用特定 Miniconda Python 和 NumPy 版本进行 CircleCI 测试,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58243255/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com